
inst.eecs.berkeley.edu/~cs61c  
UCB CS61C : Machine

Structures  
 Lecture 35 – Virtual Memory III"

”The severity of the decline in the market is
further evidence that the ‘post-PC era’ heralded
several years ago by Steven P. Jobs, Apple’s
former chief executive, was not an empty slogan.
Jobs … predicted that PCs would endure, but that
smartphones and tablets would become the
devices people favored for most of their
computing needs”

Sr Lecturer SOE
Dan Garcia

www.nytimes.com/2013/04/11/technology/data-show-steep-decline-in-pc-shipments.html!
CS61C L35 Virtual Memory III (2) Garcia, Spring 2013 © UCB

How many hours h on last project?

a)  0 ≤ h < 8
b)  8 ≤ h < 16
c)  16 ≤ h < 32
d)  32 ≤ h < 64
e)  64 ≤ h

CS61C L35 Virtual Memory III (3) Garcia, Spring 2013 © UCB

I understand Virtual Memory.

a)  Strongly disagree
b)  Mildly disagree
c)  Neutral
d)  Mildly agree
e)  Strongly agree

CS61C L35 Virtual Memory III (4) Garcia, Spring 2013 © UCB

Review
§  Manage memory to disk? Treat as cache

ú  Included protection as bonus, now critical
ú  Use Page Table of mappings for each user

vs. tag/data in cache
ú  TLB is cache of Virtual ⇒ Physical addr trans

§  Virtual Memory allows protected sharing of
memory between processes

§  Spatial Locality means Working Set of Pages
is all that must be in memory for process to
run fairly well

CS61C L35 Virtual Memory III (5) Garcia, Spring 2013 © UCB

Review: Address Mapping: Page Table
Virtual Address:

page no. offset

Page Table
Base Reg

Page Table located in physical memory

index
into
page
table

Physical
Memory
Address

Page Table

Val
-id

Access
Rights

Physical
Page
Address

.

V A.R. P. P. A.

...

...

offset"PPN"

CS61C L35 Virtual Memory III (6) Garcia, Spring 2013 © UCB

Fetching data on a memory read
§  Check TLB (input: VPN, output: PPN)

ú  hit: fetch translation
ú  miss: check page table (in memory)

   Page table hit: fetch translation
   Page table miss: page fault, fetch page from disk to memory, return translation to TLB

§  Check cache (input: PPN, output: data)
ú  hit: return value
ú  miss: fetch value from memory, remember it in cache, return value

Processor TLB
Lookup

Cache Main
Memory

VA PA
miss

hit data

Trans-
lation

hit

miss

CS61C L35 Virtual Memory III (7) Garcia, Spring 2013 © UCB

Address Translation using TLB

PPN Offset
Physical Address

VPN
Offset

Virtual Address

INDEX

TLB

Physical
Page

Number
P. P. N.

P. P. N.
...

TLB Tag
(Tag used
just like

in cache)
TLB Tag

Tag Offset INDEX
Data Cache

Tag Data

Tag Data

TLB Tag

CS61C L35 Virtual Memory III (8) Garcia, Spring 2013 © UCB

Typical TLB Format

§  TLB just a cache on the page table mappings
§  TLB access time comparable to cache

 (much less than main memory access time)
§  Dirty: since use write back, need to know whether or not

to write page to disk when replaced
§  Ref: Used to help calculate LRU on replacement

ú  Cleared by OS periodically, then checked to see if page was
referenced

 Physical Dirty Ref Valid Access
 Tag Page # Rights

CS61C L35 Virtual Memory III (9) Garcia, Spring 2013 © UCB

What if not in TLB?
§  Option 1: Hardware checks page table and

loads new Page Table Entry into TLB
§  Option 2: Hardware traps to OS, up to OS to

decide what to do
ú  MIPS follows Option 2: Hardware knows nothing

about page table
ú  A trap is a synchronous exception in a user process,

often resulting in the OS taking over and performing
some action before returning to the program.
   More about exceptions next lecture

CS61C L35 Virtual Memory III (10) Garcia, Spring 2013 © UCB

What if the data is on disk?
§  We load the page off the disk into a free

block of memory, using a DMA transfer (Direct
Memory Access – special hardware support
to avoid processor)
ú  Meantime we switch to some other process waiting

to be run

§  When the DMA is complete, we get an
interrupt and update the process's page table
ú  So when we switch back to the task, the desired

data will be in memory

CS61C L35 Virtual Memory III (11) Garcia, Spring 2013 © UCB

What if we don’t have enough memory?
§  We chose some other page belonging to a

program and transfer it onto the disk if dirty
ú  If clean (disk copy is up-to-date),

just overwrite that data in memory
ú  We chose the page to evict based on replacement

policy (e.g., LRU)

§  And update that program's page table to
reflect the fact that its memory moved
somewhere else

§  If continuously swap between disk and
memory, called Thrashing

CS61C L35 Virtual Memory III (12) Garcia, Spring 2013 © UCB

Question (1/3)
§  40-bit virtual address, 16 KB page

§  36-bit physical address

§  Number of bits in
Virtual Page Number/Page offset,
Physical Page Number/Page offset?

Page Offset (? bits)"Virtual Page Number (? bits)"

Page Offset (? bits)"Physical Page Number (? bits)"

!a: 22/18 (VPN/PO), 22/14 (PPN/PO)  
b: 24/16, 20/16  
c: 26/14, 22/14  
d: 26/14, 26/10  
e: 28/12, 24/12 !

CS61C L35 Virtual Memory III (13) Garcia, Spring 2013 © UCB

§  40-bit virtual address, 16 KB page

§  36-bit physical address

§  Number of bits in
Virtual Page Number/Page offset,
Physical Page Number/Page offset?

(1/3) Answer

Page Offset (14 bits)"Virtual Page Number (26 bits)"

Page Offset (14 bits)"Physical Page Number (22 bits)"

!a: 22/18 (VPN/PO), 22/14 (PPN/PO)  
b: 24/16, 20/16  
c: 26/14, 22/14  
d: 26/14, 26/10  
e: 28/12, 24/12 !

CS61C L35 Virtual Memory III (14) Garcia, Spring 2013 © UCB

Question (2/3): 40b VA, 36b PA
§  2-way set-assoc. TLB, 512 entries:

§  TLB Entry: Valid bit, Dirty bit,
Access Control (say 2 bits), Physical Page
Number

§  Number of bits in TLB Tag / Index / Entry?

Page Offset (14 bits)"TLB Index (? bits)"TLB Tag (? bits)"

V" D" TLB Tag (? bits)"Access (2 bits)" Physical Page No. (? bits)"

!a: 12 / 14 / 38 (TLB Tag / Index / Entry)  
b: 14 / 12 / 40  
c: 18 / 8 / 44  
d: 17 / 9 / 43  
e: 18 / 8 / 58 !

CS61C L35 Virtual Memory III (15) Garcia, Spring 2013 © UCB

(2/3) Answer
§  2-way set-assoc data cache, 256 (28) “sets”,

2 TLB entries per set è 8 bit index

§  TLB Entry: Valid bit, Dirty bit,
Access Control (2 bits),
Virtual Page Number, Physical Page Number

Page Offset (14 bits)"

Virtual Page Number (26 bits)"

TLB Index (8 bits)"TLB Tag (18 bits)"

V" D" TLB Tag (18 bits)"Access (2 bits)" Physical Page No. (22 bits)"

!a: 12 / 14 / 38 (TLB Tag / Index / Entry)  
b: 14 / 12 / 40  
c: 18 / 8 / 44  
d: 17 / 9 / 43  
e: 18 / 8 / 58 !

CS61C L35 Virtual Memory III (16) Garcia, Spring 2013 © UCB

Question (3/3)
§  2-way set-assoc, 64KB data cache, 64B block

§  Data Cache Entry: Valid bit, Dirty bit, Cache
tag + ? bits of Data

§  Number of bits in Data cache Tag / Index /
Offset / Entry?

Block Offset (? bits)"

Physical Address (36 bits)"

Cache Index (? bits)"Cache Tag (? bits)"

V" D" Cache Tag (? bits)" Cache Data (? bits)"

!a: 12 / 9 / 14 / 87 (Tag/Index/Offset/Entry)  
b: 20 / 10 / 6 / 86  
c: 20 / 10 / 6 / 534  
d: 21 / 9 / 6 / 87  
e: 21 / 9 / 6 / 535 !

CS61C L35 Virtual Memory III (17) Garcia, Spring 2013 © UCB

(3/3) Answer
§  2-way set-assoc data cache, 64K/1K (210)

“sets”, 2 entries per sets => 9 bit index

§  Data Cache Entry: Valid bit, Dirty bit, Cache
tag + 64 Bytes of Data

Block Offset (6 bits)"
Physical Address (36 bits)"

Cache Index (9 bits)"Cache Tag (21 bits)"

V" D" Cache Tag (21 bits)" Cache Data (64 Bytes = 512 bits)"

!a: 12 / 9 / 14 / 87 (Tag/Index/Offset/Entry)  
b: 20 / 10 / 6 / 86  
c: 20 / 10 / 6 / 534  
d: 21 / 9 / 6 / 87  
e: 21 / 9 / 6 / 535 !

§  User program view:
ú  Contiguous
ú  Start from some set address
ú  Infinitely large
ú  Is the only running program

§  Reality:
ú  Non-contiguous
ú  Start wherever available

memory is
ú  Finite size
ú  Many programs running at a

time

§  Virtual memory provides:
ú  illusion of contiguous memory
ú  all programs starting at same set

address
ú  illusion of ~ infinite memory

(232 or 264 bytes)
ú  Protection , Sharing

§  Implementation:
ú  Divide memory into chunks (pages)
ú  OS controls page table that maps

virtual into physical addresses
ú  memory as a cache for disk
ú  TLB is a cache for the page table

Virtual Memory Summary

CS61C L35 Virtual Memory III (19) Garcia, Spring 2013 © UCB

Bonus slides
§  These are extra slides that used to be

included in lecture notes, but have been
moved to this, the “bonus” area to serve as a
supplement.

§  The slides will appear in the order they would
have in the normal presentation

CS61C L35 Virtual Memory III (20) Garcia, Spring 2013 © UCB

4 Qs for any Memory Hierarchy
§  Q1: Where can a block be placed?

ú  One place (direct mapped)
ú  A few places (set associative)
ú  Any place (fully associative)

§  Q2: How is a block found?
ú  Indexing (as in a direct-mapped cache)
ú  Limited search (as in a set-associative cache)
ú  Full search (as in a fully associative cache)
ú  Separate lookup table (as in a page table)

§  Q3: Which block is replaced on a miss?
ú  Least recently used (LRU)
ú  Random

§  Q4: How are writes handled?
ú  Write through (Level never inconsistent w/lower)
ú  Write back (Could be “dirty”, must have dirty bit)

CS61C L35 Virtual Memory III (21) Garcia, Spring 2013 © UCB

Q1: Where block placed in upper level?
§  Block #12 placed in 8 block cache:

ú  Fully associative
ú  Direct mapped
ú  2-way set associative

   Set Associative Mapping = Block # Mod # of Sets

0 1 2 3 4 5 6 7 Block
no.

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7 Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

0 1 2 3 4 5 6 7 Block
no.

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

Set
0

Set
1

Set
2

Set
3

CS61C L35 Virtual Memory III (22) Garcia, Spring 2013 © UCB

§  Direct indexing (using index and block
offset), tag compares, or combination

§  Increasing associativity shrinks index,
expands tag

Block
offset

Block Address
Tag Index

Q2: How is a block found in upper level?

Set Select

Data Select

CS61C L35 Virtual Memory III (23) Garcia, Spring 2013 © UCB

§ Easy for Direct Mapped
§ Set Associative or Fully Associative:

ú  Random
ú  LRU (Least Recently Used)

Miss Rates
Associativity: 2-way 4-way 8-way
Size LRU Ran LRU Ran LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q3: Which block replaced on a miss?

CS61C L35 Virtual Memory III (24) Garcia, Spring 2013 © UCB

Q4: What to do on a write hit?
§  Write-through

ú  update the word in cache block and corresponding
word in memory

§  Write-back
ú  update word in cache block
ú  allow memory word to be “stale”
ú  => add ‘dirty’ bit to each line indicating that memory

be updated when block is replaced
ú  => OS flushes cache before I/O !!!

§  Performance trade-offs?
ú  WT: read misses cannot result in writes
ú  WB: no writes of repeated writes

