inst.eecs.berkeley.edu/~cs6lc

UCB CS61C : Machine

AL Structures
] Lecture 35 - Virtual Memory lil
Sr Lecturer SOE
Dan Garcia
PC SALES DROP 14% IN 2013Q1, WORST EVER!

Re-magination of Compuing Operatng Systams -
05 + Anoid = 45% Sharo va. 35% for Widows

“The severity of the decline in the market is
further evidence that the ‘post-PC era’ heralded

several years ago by Steven P. Jobs, Apple’s |2
former chief executive, was not an empty slogan. fl N =
Jobs ... predicted that PCs would endure, but that |/ -

smartphones and tablets would become the
devices people favored for most of their L)
computing needs”

www.nytimes.com/2013/04/11/; y h p-decline-in-p i .html

| understand Virtual Memory.

a) Strongly disagree
b) Mildly disagree
c) Neutral

d) Mildly agree

e) Strongly agree

474 -

Review: Address Mapping: Page Table

Virtual Address:
offset

Page Table

Page Table

Base Reg Vi AR PPA
index | [val iAccess iPhysical [—LPPNioffset]
into -id iRights :Page |
page Address Physical
'Gble Memory

Address

@ Page Table located in physical memory

Garcia,

How many hours h on last project?

a) 0<h<8
b) 8<h<16
c) 6<h<32
d) 32<h<64
e) 64<h

@ .. -

Review

= Manage memory to disk? Treat as cache
o Included protection as bonus, now critical

o Use Page Table of mappings for each user
vs. tag/data in cache

o TLB is cache of Virtual = Physical addr trans

= Virtual Memory allows protected sharing of
memory between processes

= Spatial Locality means Working Set of Pages
is all that must be in memory for process to
run fairly well

@ .. -

Fetching data on a memory read

= Check TLB (input: VPN, output: PPN)
s hit: fetch franslation
s miss: check page table (in memory)
= Page table hit: fetch translation
- Page table miss: page fault, fetch page from disk to memory, return franslation to TLB
= Check cache (input: PPN, output: data)
s hit: refurn value
= miss: fetch value from memory, remember it in cache, return value

va it pa -
Processor T8 Cache|miss | Main
Lookup Memory
Tmiss | hit data
Trans-
@ lation

Address Translation using TLB

Virtual Address
«<——\VPN——>

TLBTag | INDEX | Offset |
B

TBTag PPN
(Tagused | Physical
just like Page
in cache) Number
{TLB Tag P.P.N.

@ Tag ; Data

Data Cache . .

What if not in TLB?

= Option 1: Hardware checks page table and
loads new Page Table Entry into TLB

= Option 2: Hardware traps to OS, up to OS to
decide what to do

s MIPS follows Option 2: Hardware knows nothing
about page table

= Atrap is a synchronous exception in a user process,
often resulting in the OS taking over and performing
some action before returning to the program.
= More about exceptions next lecture

474 -

What if we don‘t have enough memory?

= We chose some other page belonging to a
program and transfer it onto the disk if dirty
a If clean (disk copy is up-to-date),
just overwrite that data in memory
s We chose the page to evict based on replacement
policy (e.g., LRU)
= And update that program's page table to
reflect the fact that its memory moved
somewhere else

= If continuously swap between disk and
memory, called Thrashing

Typical TLB Format
Physical | Dirty |Ref [Valid |Access
Tag Page # Rights

= TLB just a cache on the page table mappings
= TLB access time comparable to cache
(much less than main memory access time)
= Dirty: since use write back, need to know whether or not
to write page to disk when replaced
= Ref: Used to help calculate LRU on replacement
o Cleared by OS periodically, then checked to see if page was

referenced
CS8XC L3S Gowda,

What if the data is on disk?

= We load the page off the disk into a free
block of memory, using a DMA transfer (Direct
Memory Access - special hardware support
to avoid processor)
= Meantime we switch to some other process waiting

to be run

= When the DMA is complete, we get an

interrupt and update the process's page table

a So when we switch back to the task, the desired
data will be in memory

@ .. -

Question (1/3)

=_40-bit virtual address, 16 KB page
| virtual Page Number (2 bits) | Page Offset (2 bits) |

= 36-bit physical address
I Physical Page Number (? bits) lPage Offset (? bits) I
= Number of bits in
Virtual Page Number/Page offset,

Physical Page Number/Page offset?

: 22/18 (VPN/PO), 22/14 (PPN/PO)
24/16, 20/16
26/14, 22/14
26/14, 26/10
28/12, 24/12

mn.nu‘m

@ ... -

(1/3) Answer
=_40-bit virtual address, 16 KB page
I Virtual Page Number (26 bits) lPage Offset (14 bits) I

= 36-bit physical address
I Physical Page Number (22 bits) lPage Offset (14 bits) I

= Number of bits in
Virtual Page Number/Page offset,
Physmal Page Number/Page offset?
22/18 (VPN/PO), 22/14 (PPN/PO)
24/16, 20/16
26/14, 22714 |
26/14, 26/10
28/12, 24/12

474 -

o o VN

Question (2/3): 40b VA, 36b PA

= 2-way set-assoc. TLB, 512 entries:
| LB Tag (2 bits) | TLB Index (2 bits) | Page Offset (14 bits) |

» TLB Entry: Valid bit, Dirty bit,
Access Control (say 2 bits), Physical Page
Number

I V| D| Access (2 bits) | TLB Tag (? bits) | Physical Page No. (? bits) I
= Number of bits in TLB Tag / Index / Entry?

12 / 14 / 38 (TLB Tag / Index / Entry)
/ 12 / 40
/ 8/ 44
17/ 9/ 43
/ 8/ 58

oo o
=
o

(2/3) Answer

= 2-way set-assoc data cache, 256 (28) “sets”,
2 TLB entries per set = 8 bit index
I TLB Tag (18 bits) I TLB Index (8 bits) IPage Offset (14 bits) I

Virtual Page Number (26 bits)
= TLB Entry: Valid bit, Dirty bit,
Access Control (2 bits),
Virtual Page Number, Physical Page Number
| V|| Access (2 bits) | TLB Tag (18 bits) | Physical Page No. (22 bits) |

a: 12 / 14 / 38 (TLB Tag / Index / Entry)

c: 18/ 8/ M

27 ei 187 8/ 58

@ .. -

Question (3/3)
= 2-way set-assoc, 64KB data cache, 64B block

I Cache Tag (? bits)ICache Index (? bits) IBIock Offset (? bits‘
Physical Address (36 bits)

= Data Cache Entry: Valid bit, Dirty bit, Cache
tag + ? bits of Data

V|D| Cache Tag (? bits) I
= Number of bits in Data cache Tag / Index /

I Cache Data (? bits) l

(3/3) Answer

= 2-way set-assoc data cache, 64K/1K (2'9)
“sets”, 2 entries per sets => 9 bit index
kache Tag (21 bits)l Cache Index (9 bits) lBIock Offset (6 bits)l

Physical Address (36 bits)
= Data Cache Entry: Valid bit, Dirty bit, Cache
tag + 64 Bytes of Data

I V| Dl Cache Tag (21 bits) I ICache Data (64 Bytes = 512 bit4)

87 (Tag/Index/Offset/Entry)
86
534

Gt 8)

0.0 oo
[N (NFRYNT
H~oon

N~~~

e
vjooo v

]

Offset / Entry?
a: 12 / 9 / 14 / 87 (Tag/Index/Offset/Entry)
b: 20 / 10 / 6 / 86
c: 20 /10 / 6 / 534
a: 21/ 9/ 6/ 87
e: 21/ 9/ 6/ 535
CS8XC L3S Gowda,
Virtual Memory Summary

= User program view: = Virtual memory provides:
o Contiguous illusion of contiguous memory
o Start from some set address o all programs starting at same set
o Infinitely large address

o Is the only running program = illusion of ~ infinite memory
: (232 or 264 bytes)
= Reality:

. = Protection, Sharing

s Non-contiguous imol tati
= Start wherever available mp R aTon:

memory is Divide memory into chunks (pages)
o Finite size = OS controls page table that maps
= Many programs running at a virtual into physical addresses

time = memory as a cache for disk

= TLBis a cache for the page table

Bonus slides

= These are extra slides that used to be
included in lecture notes, but have been

supplement.

have in the normal presentation

._Bonus

moved to this, the “bonus” area to serve as a

= The slides will appear in the order they would

4 Qs for any Memory Hierarchy

= Q1: Where can a block be placed?
s One place (direct mapped)
o Afew places (set associative)
= Any place (fully associative)
* Q2: How is a block found?
= Indexing (as in a direct-mapped cache)
s Limited search (as in a set-associative cache)
s Full search (as in a fully associative cache)
= Separate lookup table (as in a page table)
= Q3: Which block is replaced on a miss?
= Least recently used (LRU)
= Random
* Q4: How are writes handled?
= Write through (Level never inconsistent w/lower)
= Write back (Could be “dirty”, must have dirty bit)

Q1: Where block placed in upper level?

= Block #12 placed in 8 block cache:
o Fully associative
o Direct mapped
= 2-way set associative
* Set Associative Mapping = Block # Mod # of Sets

Block 01234567

Block 1234567
no. o

Block 1234567
no.

Fully associative:
block 12 can go
anywhere

Set Set Set Set
Direct mapped: 0123
block 12 can go
only into block 4

Set associative:
block 12 can go

(12 mod 4)
@l -

(12 mod 8) anywhere in set 0

@ .. -

Q3: Which block replaced on a miss?

47 -

=Easy for Direct Mapped
=Set Associative or Fully Associative:

= Random

a LRU (Least Recently Used)
Miss Rates
Associativity: 2-way 4-way 8-way
Size LRU Ran LRU Ran LRU Ran
16 KB 52% 57% 47% 53% 44% 50%
64 KB 19% 2.0% 1.5% 17% 14% 1.5%
256 KB 115% 1.17% 113% 113% 112% 1.12%

Q2: How is a block found in upper level?

[Block Address [Block
[Tag index | offset

Set Select

Data Select
= Direct indexing (using index and block
offset), tag compares, or combination

= Increasing associativity shrinks index,
expands tag

@ .. -

Q4: What to do on a write hit?

= Write-through

= update the word in cache block and corresponding
word in memory

» Write-back
update word in cache block
allow memory word to be “stale”

=> add “dirty’ bit to each line indicating that memory
be updated when block is replaced

=> OS flushes cache before I/0 1!

= Performance trade-offs?
= WT: read misses cannot result in writes
2 WB: no writes of repeated writes

o

o

o

o

