UCB CS61C : Machine
Structures

Lecture 35 — Virtual Memory llI

PC SALES DROP 14% IN 2013Q1, WORST EVER!

Re-Imagination of Computing Operating Systems -
“The severity of the decline in the market is
further evidence that the ‘post-PC era’ heralded J—cE= ;
several years ago by Steven P. Jobs, Apple’s

former chief executive, was not an empty slogan. K

Jobs ... predicted that PCs would endure, but that [l

smartphones and tablets would become the

devices people favored for most of their

computing needs”

www.nytimes.com/2013/04/11/technology/data-show-steep-decline-in-pc-shipments.html

How many hours h on last project?

a 0<h<8
b) 8<h<16
c) 16<h<32
d 32<h< 64
e) 64<h

@ 47
p— -~) €S4IC L35 Virtual Memory lil (2) Garcia, Spring 2013 © UCB

| understand Virtual Memory.

a) Strongly disagree
b) Mildly disagree
c) Neutral

d) Mildly agree

e) Strongly agree

5 vy &
p— - “) CS6IC L35 Virtual Memory lil (3) Garcia, Spring 2013 © UCB

Review

= Manage memory to disk? Treat as cache
= |ncluded protection as bonus, now critical

= Use Page Table of mappings
vs. tag/data in cache

o TLB is cache of Virtual = Physical addr trans

= Virtual Memory allows protected sharing of
memory between processes

= Spatial Locality means Working Set of Pages
is all that must be in memory for process to
run fairly well

oy
) _~» CS6IC L35 Virtual Memory Il (4) Garcia, Spring 2013 © UCB

Review: Address Mapping:

Virtual Address:
[page no . Joffset]

Page Table - =
Base Reg Vi AR ! |
index | [val iAccess offsef]
info id iRights }
Page ‘ ’ Physical

table Memory
: : Address

Page Table located in physical memory

oy
) "2 CS6IC L35 Virtual Memory lll (5) Garcia, Spring 2013 © UCB

Fetching data on a memory read

= Check TLB (input: VPN, output: PPN)
= hit: fetch translation

o miss: check page table (in memory)
= Page table hit: fetch translation
= Page table miss: page fault, fetch page from disk to memory, return translation to TLB

= Check cache (input: PPN, output: data)
o hit: return value
o miss: fetch value from memory, remember it in cache, return value

VA PA

—

Processor Cache|miss
—1 Memory

hit data

Main

CS61C L35 Virtual Memory lll (6)L Garcia, Spring 2013 © UCB

Address Translation using TLB
Virtual Address

| TLBTag | | Offset |

B Tag

(Tag used
just like
in cache)

TBTag ;
‘ ‘ Offset ‘

Physical Address

Data Cache [

ata Cache fTag Data ‘ Tag ‘INDEX‘Oﬁse’r‘
:Tag : Data '

s CS6IC L35 Virtual Pemory Il (7) Garcia, Spring 2013 © UCB

v :) ’/,..

Typical TLB Format

Physical | Dirty Access
[o]e Page # Rights

TLB just a cache on the page table mappings

TLB access time comparable to cache
(much less than main memory access time)

Dirty: since use write back, need to know whether or not
to write page to disk when replaced

Ref: Used to help calculate LRU on replacement

= Cleared by OS periodically, then checked to see if page was
referenced

_» CS6IC L35 Virtual Memory lll (8) Garcia, Spring 2013 © UCB

What if not in TLB?
= Option 1: Hardware checks page table and
loads new Page Table Entry into TLB

= Option 2: Hardware to OS, up to OS to
decide what to do

= MIPS follows Option 2: Hardware knows nothing

about page table

= A trap is a synchronous exception in a user process,
often resulting in the OS taking over and performing
some action before returning to the program.

- More about exceptions next lecture

i
. CS61C L35 Virtual Memory lil (9) Garcia, Spring 2013 © UCB

What if the data is on disk?

= We load the page off the disk into a free
block of memory, using a (Direct
Memory Access - special hardware support
to avoid processor)

= Meantime we switch to some other process waiting
to be run

= When the DMA is complete, we get an
interrupt and update the process's page table

= So when we switch back to the task, the desired
data will be in memory

p— - = €S4]1C 135 Virtual Memory lll (10) Garcia, Spring 2013 © UCB

What if we don’t have enough memory?

= We chose some other page belonging to a
program and transfer it onto the disk if dirty

= |f clean (disk copy is up-to-date),
just overwrite that data in memory

= We chose the page to evict based on replacement
policy (e.g., LRU)
= And update that program's page table to
reflect the fact that its memory moved
somewhere else

= |f continuously swap between disk and
memory, called

4/' o //,
@ A9
- S @

CS61C L35 Virtual Memory Il (11) Garcia, Spring 2013 © UCB

Question (1/3)

= 40-bit virtual address, 16 KB page
= 36-bit physical address

Physical Page Number (? bits) Page Offset (? bits)

= Number of bits in
Virtual Page Number/Page offset,

Physical Page Number/Page offset?

a: 22/18 (VPN/PO), 22/14 (PPN/PO)
b: 24/16, 20/16
c: 26/14, 22/14
d: 26/14, 26/10
e: 28/12, 24/12

Y i
) _» CS6IC L35 Virtual Memory Iil (12) Garcia, Spring 2013 © UCB

(1/3) Answer

= 40-bit virtual address, 16 KB page
= 36-bit physical address

Physical Page Number Page Offset

= Number of bits in
Virtual Page Number/Page offset,

Physical Page Number/Page offset?

a: 22/18 (VPN/PO), 22/14 (PPN/PO)
b: 24/16, 20/16

lc: 26/14, 22/14 |
d: 26/14, 26/10

e: 28/12, 24/12

Y i
) .~ CS6IC L35 Virtual Memory lil (13) Garcia, Spring 2013 © UCB

Question (2/3): 40b VA, 36b PA

= 2-way set-assoc. TLB, 512 entries:
= TLB Entry: Valid bit, Dirty bit,
Access Control (say 2 bits), Physical Page

Number

E Access (2 bits) | TLB Tag (? bits) |Physical Page No. (? bits)

= Number of bits in TLB Tag / Index / Entry?

: 12 38 (TLB Tag / Index / Entry)
: 14 40
: 18 44
: 17 43
: 18 58

_~» CS6IC L35 Virtual Memory lil (14) Garcia, Spring 2013 © UCB

(2/3) Answer

= 2-way set-assoc data cache, 256 (28) “sets”,

2 TLB entries per set = 8 bit index

Virtual Page Number (26 bits)

= TLB Entry: Valid bit, Dirty bit,

Access Control (2 bits),
Virtual Page Number, Physical Page Number

.lm TLB Tag Physical Page No.

a: 12 / 14 / 38 (TLB Tag / Index / Entry)
18/ 8/44

d.
e: 18 / 8/58

_» CS6IC L35 Virtual Memory lil (15) Garcia, Spring 2013 © UCB

Question (3/3)
= 2-way set-assoc, 64KB data cache, 64B block

Cache Tag (? bits) | Cache Index (? bits) | Block Offset (? bits

Physical Address (36 bits)

= Data Cache Entry: Valid bit, Dirty bit, Cache
tag + ? bits of Data

E Cache Tag (? bits) Cache Data (? bits)

= Number of bits in Data cache Tag / Index /
Offset / Entry?

: 12/ 9 /1

4 / 87 (Tag/Index/Offset/Entry)

: 20 / 10 / 6 / 86

: 20 / 10 / 6 / 534

: 21/ 9/ 6 / 87
/ 6 /

: 21/ 9 535

oy
_~» CS6IC L35 Virtual Memory lil (16) Garcia, Spring 2013 © UCB

(3/3) Answer

= 2-way set-assoc data cache, 64K/1K (219)
“sets”, 2 entries per sets => 9 bit index

Cache Index (3 bits) | Block Offeet (s bit

Physical Address (36 bits)
= Data Cache Entry: Valid bit, Dirty bit, Cache

tag + 64 Bytes of Data

Garcia, Spring 2013 © UCB

Virtual Memory Summary

= User program view: = Virtual memory provides:
Contiguous o jllusion of contiguous memory
Start from some set address o all programs starting at same set
Infinitely large address

Is the only running program illusion of ~ infinite memory
(232 or 264 bytes)

: = Protection, Sharing
Non-contiguous

Start wherever available * Implementation:
memory is = Divide memory into chunks (pages)

Finite size = OS controls page table that maps

Many programs running at a virtual into physical addresses
time memory as a cache for disk

TLB is a cache for the page table

= Reality:

Bonus slides

= These are extra slides that used to be
included in lecture notes, but have been
moved to this, the “bonus” area to serve as a
supplement.

= The slides will appear in the order they would

have in the normal presentation

D
D

y ¥ &
) ~» CS6IC L35 Virtual Memory Il (19)

2

Garcia, Spring 2013 © UCB

4 Qs for any Memory Hierarchy

= Q1: Where can a block be placed?
= One place (direct mapped)
o A few places (set associative)
= Any place (fully associative)

= Q2: How is a block found?
o Indexing (as in a direct-mapped cache)
o Limited search (as in a set-associative cache)
o Full search (as in a fully associative cache)
= Separate lookup table (as in a page table)

= Q3: Which block is replaced on a miss?
o Least recently used (LRU)
= Random

Q4: How are writes handled?
o Write through (Level never inconsistent w/lower)
o Write back (Could be “dirty”, must have dirty bit)

CS61C L35 Virtual Memory lll (20) Garcia, Spring 2013 © UCB

Q1: Where block placed in upper level?

= Block #12 placed in 8 block cache:
= Fully associative

= Direct mapped

o 2-way set associative
- Set Associative Mapping = Block # Mod # of Sets

Block 51234567 6
no. ’ no.

- Set Set Set Set
Fully associative: Direct mapped: 0O 1 2 3
blockh12 can go block 12 can go Set associative:
O only into block 4 block 12 can go

(12 mod 8) anywhere in set 0
(12 mod 4)

CS61C L35 Virtual Memory lli (21) Garcia, Spring 2013 © UCB

Q2: How is a block found in upper level?

Set Select |

Block Address

Tag

Data Select

= Direct indexing (using index and block
offset), tag compares, or combination

= Increasing associativity shrinks index,
expands tag

oy
) 2 CS6IC L35 Virtual Memory il (22) Garcia, Spring 2013 © UCB

Q3: Which block replaced on a miss?

=Easy for Direct Mapped

=Set Associative or Fully Associative:
= Random
= L[RU (Least Recently Used)

WISNIES

Associativity: 2-way 4-way 3-way
Size LIRU Ran LRU Ran LRU Nelp

16 KB 52% 57% 47% 53% 44% 50%
64 KB 1.9% 2.0% 15% 1.7% 14% 1.5%
256 KB 1.15% 1.17% 1.13% 113% 1.12% 1.12%

4/' o //,
@ A9
- S @

CS61C L35 Virtual Memory lll (23) Garcia, Spring 2013 © UCB

Q4: What to do on a write hit?

= Write-through

= ypdate the word in cache block and corresponding
word in memory

= Write-back

update word in cache block

allow memory word to be “stale”

=> add ‘dirty’ bit to each line indicating that memory
be updated when block is replaced

=> OS flushes cache before I/0 Il!

= Performance trade-offs?
o WT: read misses cannot result in writes
z/j = WB: no writes of repeated writes

CS61C L35 Virtual Memory lll (24) Garcia, Spring 2013 © UCB

