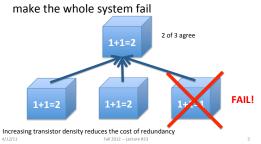
CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 38: IO Disks

Instructor: Dan Garcia http://inst.eecs.Berkeley.edu/~cs61c/sp13

Review - 6 Great Ideas in Computer Architecture

- 1. Layers of Representation/Interpretation
- 2. Moore's Law
- 3. Principle of Locality/Memory Hierarchy
- 4. Parallelism
- 5. Performance Measurement & Improvement
- 6. Dependability via Redundancy


. .

Fall 2012 -- Lecture #33

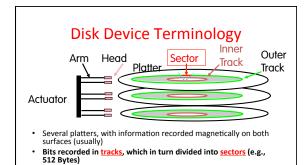
Review - Great Idea #6: Dependability via Redundancy

Redundancy so that a failing piece doesn't

make the whole system fail

Review - Great Idea #6: Dependability via Redundancy

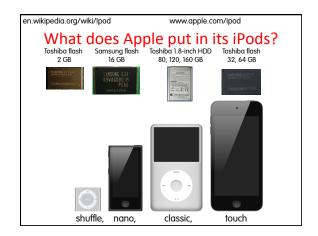
- Applies to everything from datacenters to memory
 - Redundant datacenters so that can lose 1 datacenter but Internet service stays online
 - Redundant routes so can lose nodes but Internet doesn't fail
 - Redundant disks so that can lose 1 disk but not lose data (Redundant Arrays of Independent Disks/RAID)
 - Redundant memory bits of so that can lose 1 bit but no data (Error Correcting Code/ECC Memory)

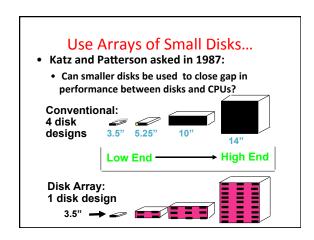

4/12/11

Magnetic Disk – common I/O device

- A kind of computer memory
 - Information stored by magnetizing ferrite material on surface of rotating disk
 - similar to tape recorder except digital rather than analog data
- Nonvolatile storage
 - retains its value without applying power to disk.
- Two Type:
 - Floppy disks slower, less dense, removable.
 - Hard Disk Drives (HDD) faster, more dense, non-removable.
- Purpose in computer systems (Hard Drive):
 - Long-term, inexpensive storage for files
 - "Backup" for main-memory. Large, inexpensive, slow level in the memory hierarchy (virtual memory)

Photo of Disk Head, Arm, Actuator Arm Spindle Head




Actuator moves head (end of arm) over track (<u>"seek"</u>), wait for sector rotate under head, then read or write

Where does Flash memory come in?

- Microdrives and Flash memory (e.g., CompactFlash going head-to-head
 - Both non-volatile (no power, data ok)
 - Flash benefits: durable & lower power (no moving parts, need to spin μdrives up/down)
 - Flash limitations: finite number of write cycles (wear on the insulating oxide layer around the charge storage mechanism).

 Most > 100K, some > 100K Warran cycles.
- How does Flash memory work?
 - NMOS transistor with an additional conductor between gate and source/drain which "traps" electrons. The presence/ absence is a 1 or 0.

Replace	Replace Small # of Large Disks with Large # Small! (1988 Disks)				
	IBM 3390K	IBM 3.5" 0061			
Capacity	20 GBytes	320 MBytes			
Volume	97 cu. ft.	0.1 cu. ft.			
Power	3 KW	11 W			
Data Rate	15 MB/s	1.5 MB/s			
I/O Rate	600 I/Os/s	55 I/Os/s			
MTTF	250 KHrs	50 KHrs			
Cost	\$250K	\$2K			

Small! (1988 Disks)				
	IBM 3390K	IBM 3.5" 0061	x70	
Capacity	20 GBytes	320 MBytes	23 GBytes	
Volume	97 cu. ft.	0.1 cu. ft.	11 cu. ft.	9X
Power	3 KW	11 W	1 KW	3×
Data Rate	15 MB/s	1.5 MB/s	120 MB/s	8×
I/O Rate	600 I/Os/s	55 I/Os/s	3900 I/Os/s	6X
MTTF	250 KHrs	50 KHrs	??? Hrs	
Cost	\$250K	\$2K	\$150K	

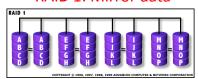
Array Reliability

- Reliability whether or not a component has failed
 - measured as Mean Time To Failure (MTTF)
- · Reliability of N disks
- = Reliability of 1 Disk ÷ N
- (assuming failures independent)
- 50,000 Hours ÷ 70 disks = 700 hour
- Disk system MTTF: Drops from 6 years to 1 month!
- · Disk arrays too unreliable to be useful!

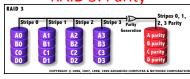
Redundant Arrays of (Inexpensive) Disks

- Files are "striped" across multiple disks
- · Redundancy yields high data availability
 - Availability: service still provided to user, even if some components failed
- · Disks will still fail
- Contents reconstructed from data redundantly stored in the array
 - ⇒ Capacity penalty to store redundant info
 - ⇒ Bandwidth penalty to update redundant info

RAID: Redundant Array of Inexpensive Disks


- Invented @ Berkeley (1989)
- A multi-billion industry 80% non-PC disks sold in RAIDs
- Idea
 - Files are "striped" across multiple disks
 - Redundancy yields high data availability
 - Disks will still fail
 - Contents reconstructed from data redundantly stored in the array
 - ⇒ Capacity penalty to store redundant info
 - ⇒ Bandwidth penalty to update redundant info

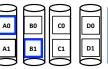
"RAID 0": No redundancy = "AID"


- Assume have 4 disks of data for this example, organized in blocks
- Large accesses faster since transfer from several disks at once

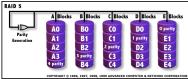
RAID 1: Mirror data

- Each disk is fully duplicated onto its "mirror"
 - Very high availability can be achieved
- Bandwidth reduced on write:
- 1 Logical write = 2 physical writes
 Most expensive solution: 100% capacity overhead

RAID 3: Parity



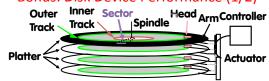
- Spindles synchronized, each sequential byte on a diff. drive
- Parity computed across group to protect against hard disk failures, stored in P disk
- Logically, a single high capacity, high transfer rate disk
- 25% capacity cost for parity in this example vs. 100% for RAID 1 (5 disks vs. 8 disks)
- Q: How many drive failures can be tolerated?


Inspiration for RAID 5 (RAID 4 block-striping)

- Small writes (write to one disk):
- Option 1: read other data disks, create new sum and write to Parity Disk (access all disks)
- Option 2: since P has old sum, compare old data to new data, add the difference to P:
 - 1 logical write = 2 physical reads + 2 physical writes to 2
- Parity Disk is bottleneck for Small writes: Write to A0, B1 → both write to P disk

(RAID 4 block-striping)

RAID 5: Rotated Parity, faster small writes



- Independent writes possible because of interleaved parity
 - Example: write to A0, B1 uses disks 0, 1, 4, 5, so can proceed in parallel
 - Still 1 small write = 4 physical disk accesses

"And in conclusion..."

- I/O gives computers their 5 senses
- I/O speed range is 100-million to one
- Processor speed means must synchronize with I/O devices before use: Polling vs. Interrupts
- Networks are another form of I/O
- Protocol suites allow networking of heterogeneous components
- Another form of principle of abstraction
- RAID
- Higher performance with more disk arms per \$
- More disks == More disk failures
- Different RAID levels provide different cost/speed/reliability tradeoffs

Bonus: Disk Device Performance (1/2)

- Disk Latency = Seek Time + Rotation Time + Transfer Time + Controller Overhead
 - Seek Time? depends on no. tracks to move arm, speed of actuator
 - Rotation Time? depends on speed disk rotates, how far sector is from head
 - Transfer Time? depends on data rate (bandwidth) of disk (f(bit density,rpm)), size of request

Bonus: Disk Device Performance (2/2)

- Average distance of sector from head?
- 1/2 time of a rotation
 - 7200 Revolutions Per Minute \Rightarrow 120 Rev/sec
 - 1 revolution = 1/120 sec ⇒ 8.33 milliseconds
 - 1/2 rotation (revolution) \Rightarrow 4.17 ms
- · Average no. tracks to move arm?
 - Disk industry standard benchmark:
 - Sum all time for all possible seek distances
 - from all possible tracks / # possible
- Assumes average seek distance is random
 Size of Disk cache can strongly affect perf!
 - Cache built into disk system, OS knows nothing

BONUS: Hard Drives are Sealed. Why?

- The closer the head to the disk, the smaller the "spot size" and thus the denser the recording.
 - Measured in Gbit/in2. ~60 is state of the art.
- Disks are sealed to keep the dust out.
 - Heads are designed to "fly" at around
 5-20nm above the surface of the disk.
 - 99.999% of the head/arm weight is supported by the air bearing force (air cushion) developed between the disk and the head.

