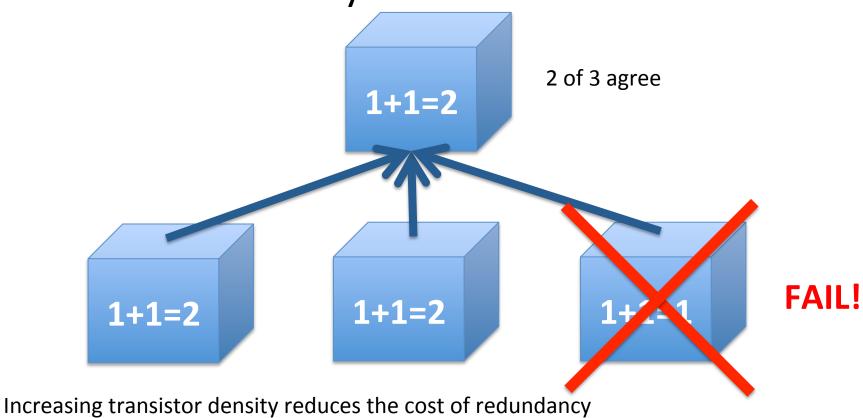
CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 38: 10 Disks

Instructor: Dan Garcia

http://inst.eecs.Berkeley.edu/~cs61c/sp13

Review


- Exceptions are "Unexpected" events
- Interrupts are asynchronous
 - can be used for interacting with I/O devices
- Need to handle in presence of pipelining, etc.
- Networks are another form of I/O
- Protocol suites allow networking of heterogeneous components
 - Another form of principle of abstraction
- Interested in Networking?
 - EE122 (CS-based in Fall, EE -based in Spring)

Review - 6 Great Ideas in Computer Architecture

- 1. Layers of Representation/Interpretation
- 2. Moore's Law
- 3. Principle of Locality/Memory Hierarchy
- 4. Parallelism
- 5. Performance Measurement & Improvement
- 6. Dependability via Redundancy

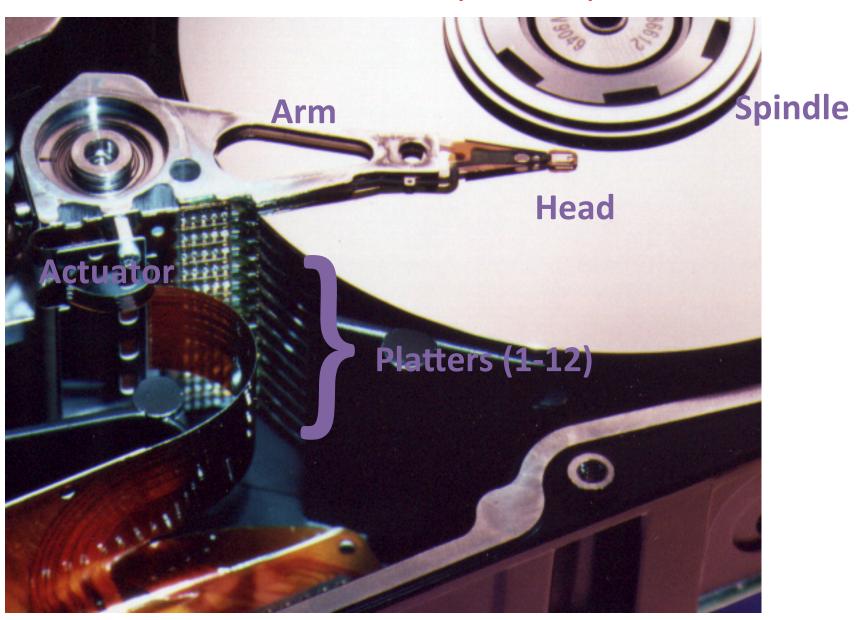
Review - Great Idea #6: Dependability via Redundancy

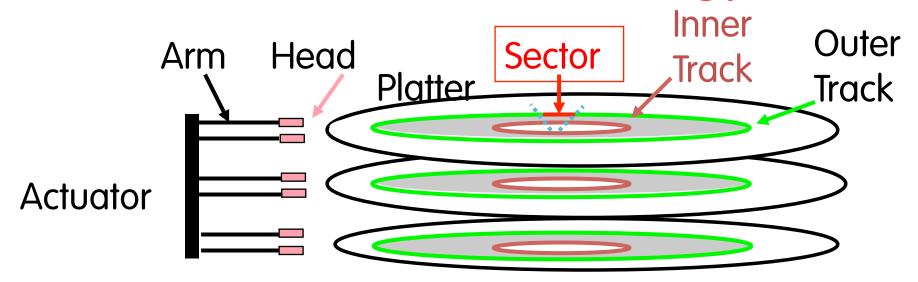
 Redundancy so that a failing piece doesn't make the whole system fail

4/12/11

Review - Great Idea #6: Dependability via Redundancy

- Applies to everything from datacenters to memory
 - Redundant datacenters so that can lose 1 datacenter but Internet service stays online
 - Redundant routes so can lose nodes but Internet doesn't fail
 - Redundant disks so that can lose 1 disk but not lose data (Redundant Arrays of Independent Disks/RAID)
 - Redundant memory bits of so that can lose 1 bit but no data (Error Correcting Code/ECC Memory)




Magnetic Disk – common I/O device

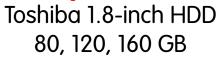
- A kind of computer memory
 - Information stored by magnetizing ferrite material on surface of rotating disk
 - similar to tape recorder except digital rather than analog data
- Nonvolatile storage
 - retains its value without applying power to disk.
- Two Types
 - Floppy disks slower, less dense, removable.
 - Hard Disk Drives (HDD) faster, more dense, non-removable.
- Purpose in computer systems (Hard Drive):
 - Long-term, inexpensive storage for files
 - "Backup" for main-memory. Large, inexpensive, slow level in the memory hierarchy (virtual memory)

Photo of Disk Head, Arm, Actuator

Disk Device Terminology

- Several platters, with information recorded magnetically on both surfaces (usually)
- Bits recorded in <u>tracks</u>, which in turn divided into <u>sectors</u> (e.g., 512 Bytes)
- Actuator moves <u>head</u> (end of <u>arm</u>) over track (<u>"seek"</u>), wait for <u>sector</u> rotate under <u>head</u>, then read or write

Where does Flash memory come in?

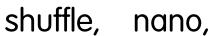

- Microdrives and Flash memory (e.g., CompactFlash going head-to-head
 - Both non-volatile (no power, data ok)
 - Flash benefits: durable & lower power
 (no moving parts, need to spin μdrives up/down)
 - Flash limitations: finite number of write cycles (wear on the insulating oxide layer around the charge storage mechanism).
 Most ≥ 100K, some ≥ 1M W/erase cycles.
- How does Flash memory work?
 - NMOS transistor with an additional conductor between gate and source/drain which "traps" electrons. The presence/ absence is a 1 or 0.

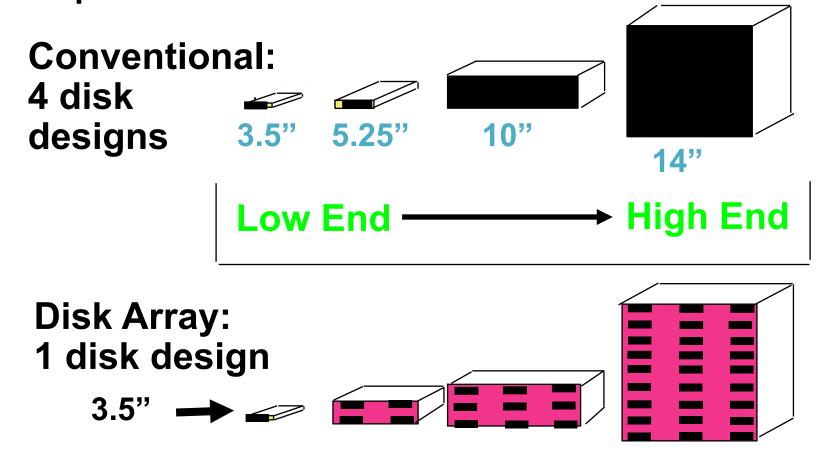
What does Apple put in its iPods?

Toshiba flash 2 GB

Samsung flash 16 GB

Toshiba flash 32, 64 GB




classic,

touch

Use Arrays of Small Disks...

- Katz and Patterson asked in 1987:
 - Can smaller disks be used to close gap in performance between disks and CPUs?

Replace Small # of Large Disks with Large # of Small!

(1988 Disks)

IBM 3390K	IBM 3.5"	0061
------------------	-----------------	------

•		
Capacity	20 GBytes	320 MBytes
Volume	97 cu. ft.	0.1 cu. ft.
Power	3 KW	11 W
Data Rate	15 MB/s	1.5 MB/s
I/O Rate	600 I/Os/s	55 I/Os/s
MTTF	250 KHrs	50 KHrs
Cost	\$250K	\$2K

Disk Arrays potentially high performance, high MB per cu. ft., high MB per KW, but what about reliability?

Replace Small # of Large Disks with Large # of Small!

(1988 Disks)

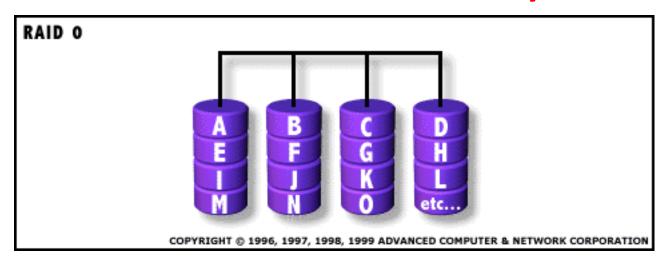
	IBM 3390K	IBM 3.5" 0061	x70	
Capacity	20 GBytes	320 MBytes	23 GBytes	
Volume	97 cu. ft.	0.1 cu. ft.	11 cu. ft.	9X
Power	3 KW	11 W	1 KW	3X
Data Rate	15 MB/s	1.5 MB/s	120 MB/s	8X
I/O Rate	600 I/Os/s	55 I/Os/s	3900 I/Os/s	6X
MTTF	250 KHrs	50 KHrs	??? Hrs	
Cost	\$250K	\$2K	\$150K	

Disk Arrays potentially high performance, high MB per cu. ft., high MB per KW, but what about reliability?

Array Reliability

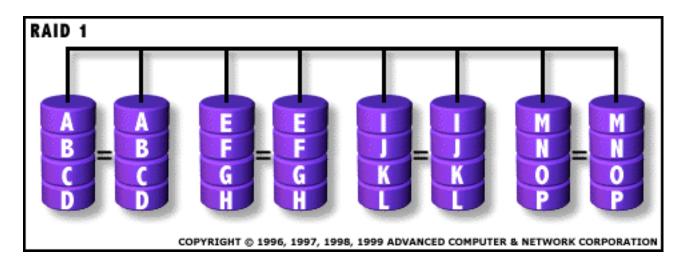
- Reliability whether or not a component has failed
 - measured as Mean Time To Failure (MTTF)
- Reliability of N disks
 - = Reliability of 1 Disk ÷ N (assuming failures independent)
 - $-50,000 \text{ Hours} \div 70 \text{ disks} = 700 \text{ hour}$
- Disk system MTTF: Drops from 6 years to 1 month!
- Disk arrays too unreliable to be useful!

Redundant Arrays of (Inexpensive) Disks

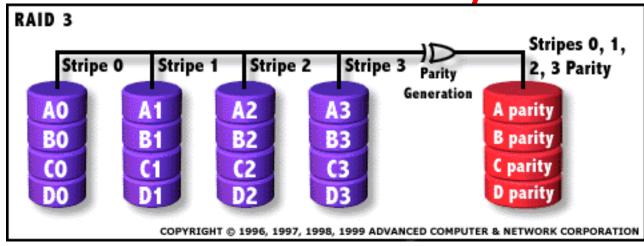

- Files are "striped" across multiple disks
- Redundancy yields high data availability
 - Availability: service still provided to user, even if some components failed
- Disks will still fail
- Contents reconstructed from data redundantly stored in the array
 - ⇒ Capacity penalty to store redundant info
 - ⇒ Bandwidth penalty to update redundant info

RAID: Redundant Array of Inexpensive Disks

- Invented @ Berkeley (1989)
- A multi-billion industry 80% non-PC disks sold in RAIDs
- Idea:
 - Files are "striped" across multiple disks
 - Redundancy yields high data availability
 - Disks will still fail
 - Contents reconstructed from data redundantly stored in the array
 - ⇒ Capacity penalty to store redundant info
 - ⇒ Bandwidth penalty to update redundant info

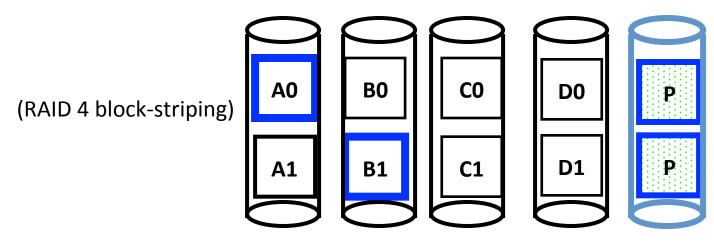


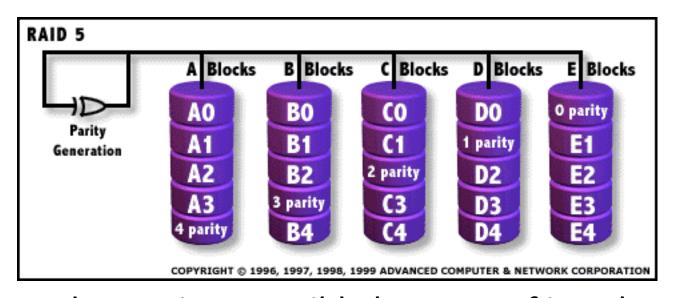
"RAID 0": No redundancy = "AID"


- Assume have 4 disks of data for this example, organized in blocks
- Large accesses faster since transfer from several disks at once

RAID 1: Mirror data

- Each disk is fully duplicated onto its "mirror"
 - Very high availability can be achieved
- Bandwidth reduced on write:
 - 1 Logical write = 2 physical writes
- Most expensive solution: 100% capacity overhead


RAID 3: Parity


- Spindles synchronized, each sequential byte on a diff. drive
- Parity computed across group to protect against hard disk failures, stored in P disk
- Logically, a <u>single</u> high capacity, high transfer rate disk
- 25% capacity cost for parity in this example vs. 100% for RAID 1 (5 disks vs. 8 disks)
- Q: How many drive failures can be tolerated?

Inspiration for RAID 5 (RAID 4 block-striping)

- Small writes (write to one disk):
 - Option 1: read other data disks, create new sum and write to Parity Disk (access all disks)
 - Option 2: since P has old sum, compare old data to new data, add the difference to P:
 - 1 logical write = 2 physical reads + 2 physical writes to 2 disks
- Parity Disk is bottleneck for Small writes: Write to A0, B1 → both write to P disk

RAID 5: Rotated Parity, faster small writes

- Independent writes possible because of interleaved parity
 - Example: write to A0, B1 uses
 disks 0, 1, 4, 5, so can proceed in parallel
 - Still 1 small write = 4 physical disk accesses

Peer Instruction

- 1. RAID 1 (mirror) and 5 (rotated parity) help with performance and availability
- 2. RAID 1 has higher cost than RAID 5
- 3. Small writes on RAID 5 are slower than on RAID 1

123

A: FFF

B: FFT

B: FTF

C: FTT

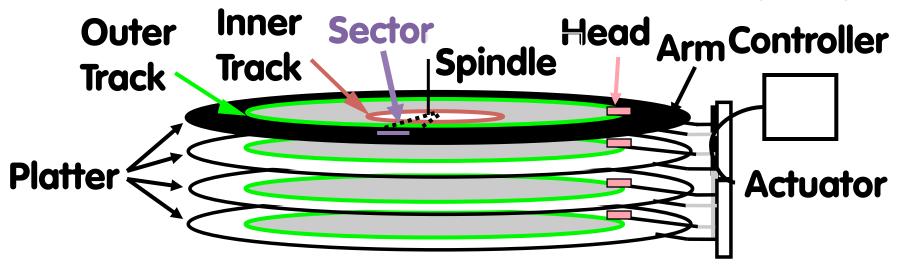
C: TFF

D: TFT

D: TTF

E: TTT

Peer Instruction Answer

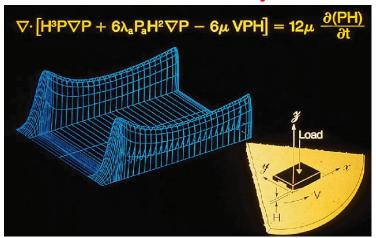

- 1. <u>All</u> RAID (0-5) helps with performance, only RAID0 doesn't help availability. TRUE
- 2. Surely! Must buy 2x disks rather than 1.25x (from diagram, in practice even less) TRUE
- 3. RAID5 (2R,2W) vs. RAID1 (2W). Latency worse, throughput (II writes) better. TRUE
- 1. RAID 1 (mirror) and 5 (rotated parity) help with performance and availability
- 2. RAID 1 has higher cost than RAID 5
- 3. Small writes on RAID 5 are slower than on RAID 1

123
A: FFF
B: FFT
B: FTF
C: FTT
C: TFF
D: TFT
D: TTF

"And in conclusion..."

- I/O gives computers their 5 senses
- I/O speed range is 100-million to one
- Processor speed means must synchronize with I/O devices before use: Polling vs. Interrupts
- Networks are another form of I/O
- Protocol suites allow networking of heterogeneous components
 - Another form of principle of abstraction
- RAID
 - Higher performance with more disk arms per \$
 - More disks == More disk failures
 - Different RAID levels provide different cost/speed/reliability tradeoffs

Bonus: Disk Device Performance (1/2)


- Disk Latency = Seek Time + Rotation Time + Transfer
 Time + Controller Overhead
 - Seek Time? depends on no. tracks to move arm, speed of actuator
 - Rotation Time? depends on speed disk rotates, how far sector is from head
 - Transfer Time? depends on data rate (bandwidth) of disk (f(bit density,rpm)), size of request

Bonus: Disk Device Performance (2/2)

- Average distance of sector from head?
- 1/2 time of a rotation
 - 7200 Revolutions Per Minute ⇒ 120 Rev/sec
 - -1 revolution = 1/120 sec \Rightarrow 8.33 milliseconds
 - 1/2 rotation (revolution) \Rightarrow 4.17 ms
- Average no. tracks to move arm?
 - Disk industry standard benchmark:
 - Sum all time for all possible seek distances from all possible tracks / # possible
 - Assumes average seek distance is random
- Size of Disk cache can strongly affect perf!
 - Cache built into disk system, OS knows nothing

BONUS: Hard Drives are Sealed. Why?

- The closer the head to the disk, the smaller the "spot size" and thus the denser the recording.
 - Measured in Gbit/in2. ~60 is state of the art.
- Disks are sealed to keep the dust out.
 - Heads are designed to "fly" at around
 5-20nm above the surface of the disk.
 - 99.999% of the head/arm weight is supported by the air bearing force (air cushion) developed between the disk and the head.

