
5/01/13 Spring 2013 -- Lecture #39 1

CS 61C: Great Ideas in Computer
Architecture (Machine Structures)

Lecture 39: GP-GPU Programming

Lecturer:
Alan Christopher

5/01/13 Spring 2013 -- Lecture #39 2

Overview

� GP-GPU: What and why

� OpenCL, CUDA, and
programming CPUs

� GPU Performance demo

5/01/13 Spring 2013 -- Lecture #39 3

A Quick Review: Classes of
Parallelism

� ILP:

� Run multiple instructions from one stream in
parallel (e.g. pipelining)

� TLP:

� Run multiple instruction streams
simultaneously (e.g. openMP)

� DLP:

� Run the same operation on multiple data at
the same time (e.g. SSE intrinsics)

GPUs are here

5/01/13 Spring 2013 -- Lecture #39 4

GPUs

� Hardware specialized for graphics calculations

� Graphics calculations are extremely data
parallel

� e.g. double the brightness of every pixel in an
image

� Programmers found that that could rephrase
some of their problems as graphics
manipulations and run them on the GPU

� Incredibly burdensome for the programmer
to use

� More usable these days � openCL, CUDA

5/01/13 Spring 2013 -- Lecture #39 5

CPU vs. GPU

� Throughput optimized

� Many, many threads
of execution

� Each thread executes
slowly

� Parallel code

� Lots of memory
bandwidth

� Latency optimized

� A couple threads of
execution

� Each thread executes
quickly

� Serial code

� Lots of caching

5/01/13 Spring 2013 -- Lecture #39 6

OpenCL and CUDA

� Extensions to C which allow for
relatively easy GPU programming

� CUDA is NVIDIA proprietary

� NVIDIA cards only

� OpenCL is opensource

� Can be used with NVIDA or ATI cards

� Similar tools, but different jargon

5/01/13 Spring 2013 -- Lecture #39 7

Kernels

� Kernels define the computation for one array
index

� The GPU runs the kernel on each index of a
specified range

� Similar functionality to map, but you get to know
the array index and the array value.

� Call the work at a given index a work-item, a
cuda thread, or a µthread.

� The entire range is called an index-space or grid.

5/01/13 Spring 2013 -- Lecture #39 8

OpenCL vvadd
/* C version. */

void vvadd(float *dst, float *a, float *b, unsigned n) {

for(int i = 0; i < n; i++)

dst[i] = a[i] + b[i]

}

/* openCL Kernel. */

__kernel void vvadd(__global float *dst, __global float *a,
 __global float *b, unsigned n) {

unsigned tid = get_global_id(0);

if (tid < n)

dst[tid] = a[tid] + b[tid];

}

5/01/13 Spring 2013 -- Lecture #39 9

Programmer's View of Execution

globalId 0

globalId 1

globalId 255

Create enough
work groups to

cover input
vector

(openCL calls
this ensemble
of work groups
an index space,

can be 3-
dimensional in

openCL, 2
dimensional in

CUDA) Conditional (i<n)
turns off unused
threads in last

block

Local work
size

(programmer
can choose)

globalId 256

globalId 257

globalId 511

globalId m

globalId m+1

globalId n+e

5/01/13 Spring 2013 -- Lecture #39 10

Hardware Execution Model

GPU

� GPU is built from multiple parallel cores, each core
contains a multithreaded SIMD processor.

� CPU sends whole index-space over to GPU, which
distributes work-groups among cores (each work-group
executes on one core)

� Programmer unaware of number of cores

Core 0

Lane 0

Lane 1

Lane 15

Core 1

Lane 0

Lane 1

Lane 15

Core 15

Lane 0

Lane 1

Lane 15

GPU Memory

CPU

CPU Memory

5/01/13 Spring 2013 -- Lecture #39 11

� GPUs use a SIMT model, where individual scalar instruction streams
for each work item are grouped together for SIMD execution on
hardware (Nvidia groups 32 CUDA threads into a warp. OpenCL
refers to them as wavefronts.)

µT0 µT1 µT2 µT3 µT4 µT5 µT6 µT7
ld x
mul a
ld y
add
st y

Scalar
instruction

stream

SIMD execution across wavefront

�Single Instruction, Multiple Thread�

5/01/13 Spring 2013 -- Lecture #39 12

Teminology Summary

� Kernel: The function that is mapped across the
input.

� Work-item: The basic unit of execution. Takes care
of one index. Also called a microthread or cuda
thread.

� Work-group: A group of work-items. Each work-
group is sent to one core in the GPU.

� Index-space: The range of indices over which the
kernel is applied.

� Wavefront: A group of microthreads (work-items)
scheduled to be SIMD executed with eachother.

4/29/13 Fall 2011 -- Lecture #37 13

Administrivia

� Project 4 is due May 5th.

� Lab this week is free time to work on
the project.

5/01/13 Spring 2013 -- Lecture #39 14

Conditionals in the SIMT Model
� Simple if-then-else are compiled into predicated execution,

equivalent to vector masking

� More complex control flow compiled into branches

� How to execute a vector of branches?

µT0 µT1 µT2 µT3 µT4 µT5 µT6 µT7

tid=threadid
If (tid >= n) skip

Call func1
add
st y

Scalar

instruction

stream

SIMD execution across warp

skip:

5/01/13 Spring 2013 -- Lecture #39 15

Branch Divergence
� Hardware tracks which µthreads take or don�t

take branch

� If all go the same way, then keep going in
SIMD fashion

� If not, create mask vector indicating
taken/not-taken

� Keep executing not-taken path under mask,
push taken branch PC+mask onto a hardware
stack and execute later

� When can execution of µthreads in warp
reconverge?

5/01/13 Spring 2013 -- Lecture #39 16

Warps (wavefronts) are
multithreaded on a single core

� One warp of 32 µthreads is a single
thread in the hardware

� Multiple warp threads are interleaved in
execution on a single core to hide
latencies (memory and functional unit)

� A single thread block can contain multiple
warps (up to 512 µT max in CUDA), all
mapped to single core

� Can have multiple blocks executing on
one core

[Nvidia, 2010]

5/01/13 Spring 2013 -- Lecture #39 17

OpenCL Memory Model

� Global � read and write by all
work-items and work-groups

� Constant � read-only by work-
items; read and write by host

� Local � used for data sharing;
read/write by work-items in the
same work group

� Private � only accessible to one
work-item

5/01/13 Spring 2013 -- Lecture #39 18

SIMT
� Illusion of many independent threads

� But for efficiency, programmer must try
and keep µthreads aligned in a SIMD
fashion

� Try to do unit-stride loads and store so
memory coalescing kicks in

� Avoid branch divergence so most
instruction slots execute useful work
and are not masked off

5/01/13 Spring 2013 -- Lecture #39 19

VVADD
/* C version. */
void vvadd(float *dst, float *a, float *b, unsigned n) {

#pragma omp parallel for
for(int i = 0; i < n; i++)

dst[i] = a[i] + b[i]
}

/* openCL Kernel. */
__kernel void vvadd(__global float *dst, __global float *a,
 __global float *b, unsigned n) {

unsigned tid = get_global_id(0);
if (tid < n)

dst[tid] = a[tid] + b[tid];
}

A: CPU faster
B: GPU faster

5/01/13 Spring 2013 -- Lecture #39 20

VVADD

/* C version. */
void vvadd(float *dst, float *a, float *b, unsigned n) {

#pragma omp parallel for
for(int i = 0; i < n; i++)

dst[i] = a[i] + b[i]
}

� Only 1 flop per three memory accesses =>
 memory bound calculation.

��A many core processor A device for turning �

 a compute bound problem into a memory
 bound problem� � Kathy Yelick

5/01/13 Spring 2013 -- Lecture #39 21

VECTOR_COP
/* C version. */
void vector_cop(float *dst, float *a, float *b, unsigned n) {

#pragma omp parallel for
for(int i = 0; i < n; i++) {

dst[i] = 0;
for (int j = 0; j < A_LARGE_NUMBER; j++)

dst[i] += a[i]*2*b[i] – a[i]*a[i] – b[i]*b[i];
}

}

/* OpenCL kernel. */
__kernel void vector_cop(__global float *dst, __global float *a,
 __global float *b, unsigned n) {

unsigned i = get_global_id(0);
if (tid < n) {

dst[i] = 0;
for (int j = 0; j < A_LARGE_NUMBER; j++)

dst[i] += a[i]*2*b[i] – a[i]*a[i] – b[i]*b[i];
}

}

A: CPU faster
B: GPU faster

5/01/13 Spring 2013 -- Lecture #39 22

GP-GPU in the future
� High-end desktops have separate GPU chip, but trend

towards integrating GPU on same die as CPU (already in
laptops, tablets and smartphones)

� Advantage is shared memory with CPU, no need to transfer data

� Disadvantage is reduced memory bandwidth compared to dedicated
smaller-capacity specialized memory system

� Graphics DRAM (GDDR) versus regular DRAM (DDR3)

� Will GP-GPU survive? Or will improvements in CPU DLP
make GP-GPU redundant?

� On same die, CPU and GPU should have same memory bandwidth

� GPU might have more FLOPS as needed for graphics anyway

5/01/13 Spring 2013 -- Lecture #39 23

Acknowledgements

� These slides contain materials developed and
copryright by

� Krste Asanovic (UCB)

� AMD

� codeproject.com

4/29/13 Fall 2011 -- Lecture #37 24

And in conclusion�

� GPUs thrive when

� The calculation is data parallel
� The calculation is CPU-bound
� The calculation is large

� CPUs thrive when
� The calculation is largely serial
� The calculation is small
� The programmer is lazy

5/01/13 Spring 2013 -- Lecture #39 25

Bonus

� OpenCL source code for vvadd and vector_cop
demos available at

http://www-inst.eecs.berkeley.edu/~cs61c/sp13/lec/39/demo.tar.gz

