CS 61C: Great Ideas in Computer
Architecture (Machine Structures)

Lecture 39: GP-GPU Programming

Lecturer:
Alan Christopher

5/01/13 Spring 2013 -- Lecture #39 1

A Quick Review: Classes of
Parallelism

e ILP:

« Run multiple instructions from one stream in
parallel (e.g. pipelining)

. TLP:

* Run multiple instruction streams
simultaneously (e.g. openMP)

* DLP:

« Run the same operation on multiple data at
the same time (e.g. SSE intrinsics)

GPUs are here

5/01/13 Spring 2013 -- Lecture #39 3

CPU vs. GPU

5/01/13

« Latency optimized

A couple threads of
execution

Each thread executes
quickly

Serial code

Lots of caching

Spring 2013 -- Lecture #39

* Throughput optimized

Many, many threads
of execution

Each thread executes
slowly

Parallel code

Lots of memory
bandwidth

Overview

* GP-GPU: What and why

» OpenCL, CUDA, and
programming CPUs

* GPU Performance demo

5/01/13 Spring 2013 -- Lecture #39 2

GPUs

« Hardware specialized for graphics calculations

« Graphics calculations are extremely data
parallel

e.g. double the brightness of every pixel in an
image

» Programmers found that that could rephrase
some of their problems as graphics
manipulations and run them on the GPU

« Incredibly burdensome for the programmer
to use

« More usable these days - openCL, CUDA

5/01/13 Spring 2013 -- Lecture #39 4

OpenCL and CUDA

e Extensions to C which allow for
relatively easy GPU programming

CUDA is NVIDIA proprietary
* NVIDIA cards only

e OpenCL is opensource
» Can be used with NVIDA or ATI cards

e Similar tools, but different jargon

5/01/13 Spring 2013 -- Lecture #39 6

Kernels

« Kernels define the computation for one array
index

e The GPU runs the kernel on each index of a
specified range

» Similar functionality to map, but you get to know
the array index and the array value.

» Call the work at a given index a work-item, a

cuda thread, or a uthread.

* The entire range is called an index-space or grid.

5/01/13

Spring 2013 -- Lecture #39 7

Programmer's View of Execution

Create enough Tobana 0
work groups to Locall work
cover input : f size
vector (programmer
(o'penCL calls can choose)
this ensemble
of work groups | -
an indexgspaf:)e, ,.
can be 3- ! !
dimensional in
openCL, 2
dimensional in
CUDA) Conditional (i<n)
turns off unused
|_— threadsin last
i i block
5/01/13 Spring 2013 -- Lecture #39 9

“Single Instruction, Multiple Thread”

« GPUs use a SIMT model, where individual scalar instruction streams
for each work item are grouped together for SIMD execution on
hardware (Nvidia groups 32 CUDA threads into a warp. OpenCL
refers to them as wavefronts.)

1d x

Scalar mul a
instruction 1adddy
stream sty

5/01/13

UTO PTL pT2 uT3 pT4 uTS pT6 uT7

SIMD execution across wavefront

Spring 2013 -- Lecture #39 11

OpenCL vvadd

/* C version. */
void vvadd(float *dst, float *a, float *b, unsigned n) {
for(int i = 0; i < n; i++)
dst[i] = a[i] + b[i]
}
/* openCL Kernel. */

__kernel void vvadd(__global float *dst, _ global float *a,
__global float *b, unsigned n) {

unsigned tid = get_global id(0);
if (tid < n)

dst[tid] = a[tid] + b[tid];

5/01/13 Spring 2013 -- Lecture #39 8

Hardware Execution Model

Lane 0 Lane 0 Lane 0
Lane 1 Lane 1 Lane 1
CPU [—s
Lane 15 Lane 15 Lane 15
§ |Core 0 Core 1 |Core 15

| CPU Memory I GPU
GPU Memory

« GPU is built from multiple parallel cores, each core
contains a multithreaded SIMD processor.

« CPU sends whole index-space over to GPU, which
distributes work-groups among cores (each work-group
executes on one core)

« Programmer unaware of number of cores
5/01/13 Spring 2013 -- Lecture #39 10

Teminology Summary

« Kernel: The function that is mapped across the
input.

« Work-item: The basic unit of execution. Takes care
of one index. Also called a microthread or cuda
thread.

» Work-group: A group of work-items. Each work-
group is sent to one core in the GPU.

» Index-space: The range of indices over which the
kernel is applied.

« Wavefront: A group of microthreads (work-items)
scheduled to be SIMD executed with eachother.

5/01/13 Spring 2013 -- Lecture #39 12

Administrivia Conditionals in the SIMT Model

. Simple if-then-else are compiled into predicated execution,
equivalent to vector masking

° PrOjeCt 4 iS due May Sth . More complex control flow compiled into branches

. How to execute a vector of branches?

* Lab this week is free time to work on
the project.

UTO pT1l pT2 pT3 pT4 uTS pT6 uT7

tid=threadid
Scalar If (tid >= n) skip
instruction Call funci

stream add

sty

v skip:
SIMD execution across warp
4/29/13 Fall 2011 -- Lecture #37 13 5/01/13 Spring 2013 -- Lecture #39 14

Warps (wavefronts) are

Branch Divergence multithreaded on a single core

- Hardware tracks which pthreads take or don’t
take branch

- If all go the same way, then keep going in 4
SIMD fashion / AL

. One warp of 32 pthreads is a single
thread in the hardware

. Multiple warp threads are interleaved in
execution on a single core to hide

. . . SM multithreaded i i i
- If not, create mask vector indicating BB] fte,”c:est;me?‘;y ak“d f“”“':”,a' “”'Itt’, |
ime . single rea 0OCK Can contaln multiple
taken/not-taken (il e T warpg (up to 512 kT max in CUDA), all P
: COOEEARMAREICT mapped to single core
 Keep executing not-taken path under mask, [, Warp . srucion 32— . Can have multiple blocks executing on
push taken branch PC+mask onto a hardware A one core
stack and execute later ARBERRRRBAT
- When can execution of pthreads in warp TP ey
reconverge? Bettsissssistasss
[Warp 1, instruction 43 |
v \AAAAAAAAA 000001
5/01/13 Spring 2013 -- Lecture #39 15 5/01/13 [Nvidia, 2010] Spring 2013 -- Lecture #39 16

OpenCL Memory Model SIMT

« lllusion of many independent threads

A ; - But for efficiency, programmer must try
| r— and keep pthreads aligned in a SIMD
fashion

. Global - read and write by all Pivale. || Pivate

Memory | Memory

work-items and work-groups
Workitem 1 WorkitemM

. Constant - read-only by work-
items; read and write by host

. Local - used for data sharing;

!] « Try to do unit-stride loads and store so
read/write by work-items in the I I m)émory coalescing kicks in
same wark group

- Private - only accessible to one | gumpus pevie « Avoid branch divergence SO most
work-item instruction slots execute useful work
and are not masked off

Compute Unit1 Compute UnitN

Compute Device Memory

5/01/13 Spring 2013 -- Lecture #39 17 5/01/13 Spring 2013 -- Lecture #39 18

VVADD

[* C version. */
void vvadd(float *dst, float *a, float *b, unsigned n) {
#pragma omp parallel for
for(int i = 0; i < n; i++)
dst[i] = a[i] + b[i]
}

/* openCL Kernel. */
__kernel void vvadd(__global float *dst, _ global float *a,
__global float *b, unsigned n) {
unsigned tid = get_global id(0);
if (tid < n)
dst[tid] = a[tid] + b[tid];

A: CPU faster
B: GPU faster

5/01/13 Spring 2013 -- Lecture #39 19

VECTOR_COP

void vector_cop(float *dst, float *a, float *b, unsigned n) {
#pragma omp parallel for
for(int i = 0; i < n; i++) {
dst[i] = 0;
for (int j = 0; j < A_LARGE_NUMBER; j++)
dst[i] += a[i]*2*b[i] — a[i]*a[i] — b[i]*b[i];
}
}
/* OpenCL kernel. */
__kernel void vector_cop(__global float *dst, _ global float *a,
__global float *b, unsigned n) {
unsigned i = get_global_id(0);
if (tid < n) {

dst[i] = 0;
for (int j = 0; j < A_LARGE_NUMBER; j++)
dst[i] += a[i]*2*b[i] — a[i]*a[i] — b[i]*b[i];

}

A: CPU faster
B: GPU faster

5/01/13 Spring 2013 -- Lecture #39 21

Acknowledgements

« These slides contain materials developed and
copryright by

« Krste Asanovic (UCB)
« AMD
« codeproject.com

5/01/13 Spring 2013 -- Lecture #39 23

VVADD

/* C version. */
void vvadd(float *dst, float *a, float *b, unsigned n) {
#pragma omp parallel for
for(int i = 0; i < n; i++)
dst[i] = a[i] + b[i]
}

* Only 1 flop per three memory accesses =>
memory bound calculation.

*“A many core processor = A device for turning
a compute bound problem into a memory
bound problem” — Kathy Yelick

5/01/13 Spring 2013 -- Lecture #39 20

GP-GPU in the future

. High-end desktops have separate GPU chip, but trend
towards integrating GPU on same die as CPU (already in
laptops, tablets and smartphones)

. Advantage is shared memory with CPU, no need to transfer data

. Disadvantage is reduced memory bandwidth compared to dedicated
smaller-capacity specialized memory system

~ Graphics DRAM (GDDR) versus regular DRAM (DDR3)

« Will GP-GPU survive? Or will improvements in CPU DLP
make GP-GPU redundant?

« On same die, CPU and GPU should have same memory bandwidth
« GPU might have more FLOPS as needed for graphics anyway

5/01/13 Spring 2013 -- Lecture #39 22

And in conclusion...

* GPUs thrive when
* The calculation is data parallel
* The calculation is CPU-bound
* The calculation is large

* CPUs thrive when

* The calculation is largely serial
* The calculation is small
* The programmer is lazy

4/29/13 Fall 2011 -- Lecture #37 24

Bonus

» OpenCL source code for vvadd and vector_cop
demos available at

http://www-inst.eecs.berkeley.edu/~cs61c/sp13/lec/39/demo.tar.gz

5/01/13 Spring 2013 -- Lecture #39 25

