
CS61C L04 Introduction to C (pt 2) (1)! Garcia © UCB!

Reference slides!

You ARE responsible for the
material on these slides (they’re

just taken from the reading
anyway). These were the slides

that generated the fewest
questions in years past (i.e.,

those you could just read and
fully understand.)!

CS61C L04 Introduction to C (pt 2) (2)! Garcia © UCB!

C Strings!

• A string in C is just an array of
characters.!
! !char string[] = "abc";!
• How do you tell how long a string is?!

• Last character is followed by a 0 byte
(null terminator) ! !!
int strlen(char s[])
{
 int n = 0;
 while (s[n] != 0) n++;
 return n;
}

CS61C L04 Introduction to C (pt 2) (3)! Garcia © UCB!

C String Standard Functions!

• int strlen(char *string);
• compute the length of string

• int strcmp(char *str1, char *str2);
•  return 0 if str1 and str2 are identical (how is

this different from str1 == str2?)!

• char *strcpy(char *dst, char *src);
• copy the contents of string src to the memory

at dst. The caller must ensure that dst has
enough memory to hold the data to be copied.!

CS61C L04 Introduction to C (pt 2) (4)! Garcia © UCB!

Administrivia!
• Read K&R 6 by the next lecture!
• There is a language called D!!

• www.digitalmars.com/d/!

• Homework expectations!
• Readers don’t have time to fix your
programs which have to run on lab
machines.!

• Code that doesn’t compile or fails all of
the autograder tests ⇒ 0!

CS61C L04 Introduction to C (pt 2) (5)! Garcia © UCB!

Pointers & Allocation (1/2)!

• After declaring a pointer:!
int *ptr;

!ptr doesn’t actually point to anything
yet (it actually points somewhere - but
don’t know where!). We can either:!

• make it point to something that already
exists, or!

• allocate room in memory for something
new that it will point to… (next time)!

CS61C L04 Introduction to C (pt 2) (6)! Garcia © UCB!

Pointers & Allocation (2/2)!

• Pointing to something that already
exists:!
 int *ptr, var1, var2;
 var1 = 5;
 ptr = &var1;
 var2 = *ptr;

• var1 and var2 have room implicitly
allocated for them.

ptr" var1" ?" var2" ?"5 5 ?

CS61C L04 Introduction to C (pt 2) (7)! Garcia © UCB!

Arrays (one elt past array must be valid)!

• Array size n; want to access from 0 to
n-1, but test for exit by comparing to
address one element past the array!
 int ar[10], *p, *q, sum = 0;
...
p = &ar[0]; q = &ar[10];
while (p != q)
 /* sum = sum + *p; p = p + 1; */

 sum += *p++;!
• Is this legal?!

• C defines that one element past end of
array must be a valid address, i.e., not
cause an bus error or address error!

CS61C L04 Introduction to C (pt 2) (8)! Garcia © UCB!

Pointer Arithmetic!
• So what’s valid pointer arithmetic?!

• Add an integer to a pointer.!
• Subtract 2 pointers (in the same array).!
• Compare pointers (<, <=, ==, !=, >, >=)!
• Compare pointer to NULL (indicates that
the pointer points to nothing).!

• Everything else is illegal since it
makes no sense:!

• adding two pointers!
• multiplying pointers !
• subtract pointer from integer!

CS61C L04 Introduction to C (pt 2) (9)! Garcia © UCB!

Pointer Arithmetic to Copy memory!

• We can use pointer arithmetic to
“walk” through memory:!
void copy(int *from, int *to, int n) {
 int i;
 for (i=0; i<n; i++) {
 *to++ = *from++;
 }
}
• Note we had to pass size (n) to copy!

CS61C L04 Introduction to C (pt 2) (10)! Garcia © UCB!

Pointer Arithmetic (1/2)!

• Since a pointer is just a mem address, we
can add to it to traverse an array.!
• p+1 returns a ptr to the next array elt.!
• *p++ vs (*p)++ ?!

•  x = *p++ ⇒ x = *p ; p = p + 1;
•  x = (*p)++ ⇒ x = *p ; *p = *p + 1;!

• What if we have an array of large structs
(objects)?!

• C takes care of it: In reality, p+1 doesn’t add
1 to the memory address, it adds the size of
the array element.!

CS61C L04 Introduction to C (pt 2) (11)! Garcia © UCB!

int get(int array[], int n)
{
 return (array[n]);

 // OR...
 return *(array + n);
}

Pointer Arithmetic (2/2)!

• C knows the size of the thing a pointer
points to – every addition or
subtraction moves that many bytes.!

• 1 byte for a char, 4 bytes for an int, etc.!

• So the following are equivalent:!

CS61C L04 Introduction to C (pt 2) (12)! Garcia © UCB!

Pointer Arithmetic Summary!
• x = *(p+1) ?!

⇒ x = *(p+1) ; !
• x = *p+1 ?!

⇒ x = (*p) + 1 ;
• x = (*p)++ ? !

⇒ x = *p ; *p = *p + 1;
• x = *p++ ? (*p++) ? *(p)++ ? *(p++) ?!

⇒ x = *p ; p = p + 1;
• x = *++p ? !

⇒ p = p + 1 ; x = *p ;

•  Lesson?!
• Using anything but the standard *p++ , (*p)++

causes more problems than it solves!!

CS61C L04 Introduction to C (pt 2) (13)! Garcia © UCB!

Arrays vs. Pointers!

• An array name is a read-only pointer
to the 0th element of the array.!
• An array parameter can be declared as
an array or a pointer; an array
argument can be passed as a pointer.!

int strlen(char s[])
{
 int n = 0;
 while (s[n] != 0)
 n++;
 return n;
}

int strlen(char *s)
{
 int n = 0;
 while (s[n] != 0)
 n++;
 return n;
}

Could be written: 
while (s[n])"

CS61C L04 Introduction to C (pt 2) (14)! Garcia © UCB!

Segmentation Fault vs Bus Error?!
• http://www.hyperdictionary.com/!
• Bus Error!

• A fatal failure in the execution of a machine
language instruction resulting from the
processor detecting an anomalous condition on
its bus. Such conditions include invalid address
alignment (accessing a multi-byte number at an
odd address), accessing a physical address that
does not correspond to any device, or some
other device-specific hardware error. A bus
error triggers a processor-level exception which
Unix translates into a “SIGBUS” signal which, if
not caught, will terminate the current process."

• Segmentation Fault!
• An error in which a running Unix program

attempts to access memory not allocated to it
and terminates with a segmentation violation
error and usually a core dump.!

CS61C L04 Introduction to C (pt 2) (15)! Garcia © UCB!

C Pointer Dangers!
• Unlike Java, C lets you cast a value of
any type to any other type without
performing any checking.!

! int x = 1000;

 int *p = x; /* invalid */

 int *q = (int *) x; /* valid */

• The first pointer declaration is invalid
since the types do not match.!
• The second declaration is valid C but is
almost certainly wrong!

• Is it ever correct?!
CS61C L04 Introduction to C (pt 2) (16)! Garcia © UCB!

C Strings Headaches!
• One common mistake is to forget to
allocate an extra byte for the null
terminator.!
• More generally, C requires the
programmer to manage memory
manually (unlike Java or C++).!

• When creating a long string by
concatenating several smaller strings,
the programmer must insure there is
enough space to store the full string!!

• What if you don’t know ahead of time
how big your string will be?!

• Buffer overrun security holes!!

CS61C L04 Introduction to C (pt 2) (17)! Garcia © UCB!

Common C Error!

• There is a difference between
assignment and equality!
a = b is assignment!
a == b is an equality test!

• This is one of the most common errors
for beginning C programmers!!

• One solution (when comparing with
constant) is to put the var on the right!  
If you happen to use =, it won’t compile.!
if (3 == a) { ...

CS61C L04 Introduction to C (pt 2) (18)! Garcia © UCB!

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta!
1.  Kid meets giant Texas people exercising zen-like yoga. – Rolf O

2.  Kind men give ten percent extra, zestfully, youthfully. – Hava E

3.  Kissing Mentors Gives Testy Persistent Extremists Zealous Youthfulness. –
Gary M

4.  Kindness means giving, teaching, permeating excess zeal yourself. – Hava E

5.  Killing messengers gives terrible people exactly zero, yo

6.  Kindergarten means giving teachers perfect examples (of) zeal (&) youth

7.  Kissing mediocre girls/guys teaches people (to) expect zero (from) you

8.  Kinky Mean Girls Teach Penis-Extending Zen Yoga

9.  Kissing Mel Gibson, Tom Petty exclaimed: “Zesty, yo!” – Dan G

10.  Kissing me gives ten percent extra zeal & youth! – Dan G (borrowing parts)

CS61C L04 Introduction to C (pt 2) (19)! Garcia © UCB!

C structures : Overview!
• A struct is a data structure
composed from simpler data types.!

• Like a class in Java/C++ but without
methods or inheritance.!

struct point { /* type definition */
 int x;
 int y;
};

void PrintPoint(struct point p)
{
 printf(“(%d,%d)”, p.x, p.y);
}

struct point p1 = {0,10}; /* x=0, y=10 */

PrintPoint(p1);

As always in C, the argument is passed by “value” – a copy is made.!

CS61C L04 Introduction to C (pt 2) (20)! Garcia © UCB!

C structures: Pointers to them!

• Usually, more efficient to pass a
pointer to the struct.!
• The C arrow operator (->)
dereferences and extracts a structure
field with a single operator.!
• The following are equivalent:!

struct point *p;
 /* code to assign to pointer */
printf(“x is %d\n”, (*p).x);
printf(“x is %d\n”, p->x);

CS61C L04 Introduction to C (pt 2) (21)! Garcia © UCB!

How big are structs?!

• Recall C operator sizeof() which
gives size in bytes (of type or variable)!
• How big is sizeof(p)? !
 struct p {

 char x;
 int y;

};!
• 5 bytes? 8 bytes? !
• Compiler may word align integer y!

CS61C L04 Introduction to C (pt 2) (22)! Garcia © UCB!

Linked List Example!

• Let’s look at an example of using
structures, pointers, malloc(), and
free() to implement a linked list of
strings.!

/* node structure for linked list */
struct Node {
 char *value;
 struct Node *next;
};

Recursive  
definition!!

CS61C L04 Introduction to C (pt 2) (23)! Garcia © UCB!

typedef simplifies the code!
struct Node {
 char *value;
 struct Node *next;
};

/* "typedef" means define a new type */
typedef struct Node NodeStruct;
 … OR …
typedef struct Node {
 char *value;
 struct Node *next;
} NodeStruct;

 … THEN

 typedef NodeStruct *List;
 typedef char *String;

/* Note similarity! */
/* To define 2 nodes */

struct Node {
 char *value;
 struct Node *next;
} node1, node2;

String value;

CS61C L04 Introduction to C (pt 2) (24)! Garcia © UCB!

Linked List Example!
/* Add a string to an existing list */
List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

{
 String s1 = "abc", s2 = "cde";
 List theList = NULL;
 theList = cons(s2, theList);
 theList = cons(s1, theList);
/* or, just like (cons s1 (cons s2 nil)) */
 theList = cons(s1, cons(s2, NULL));

CS61C L04 Introduction to C (pt 2) (25)! Garcia © UCB!

Linked List Example!
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:"
list:"

"abc"

…" …"
NULL"?"

s:"

CS61C L04 Introduction to C (pt 2) (26)! Garcia © UCB!

Linked List Example!
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:"
list:"

"abc"

…" …"
NULL"?"

?" s:"

CS61C L04 Introduction to C (pt 2) (27)! Garcia © UCB!

Linked List Example!
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:"
list:"

"abc"

…" …"
NULL"

?"

"????"

s:"

CS61C L04 Introduction to C (pt 2) (28)! Garcia © UCB!

Linked List Example!
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:"
list:"

"abc"

…" …"
NULL"

?"

"abc"

s:"

CS61C L04 Introduction to C (pt 2) (29)! Garcia © UCB!

Linked List Example!
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:"
list:"

s:"
"abc"

…" …"
NULL"

"abc"

CS61C L04 Introduction to C (pt 2) (30)! Garcia © UCB!

Linked List Example!
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:" …" …"
NULL"

"abc"

s:"
"abc"

CS61C L04 Introduction to C (pt 2) (31)! Garcia © UCB!

int main(void){  
int A[] = {5,10};  
int *p = A;  

printf(“%u %d %d %d\n”,p,*p,A[0],A[1]);  
 p = p + 1;  
printf(“%u %d %d %d\n”,p,*p,A[0],A[1]);  
*p = *p + 1;  
printf(“%u %d %d %d\n”,p,*p,A[0],A[1]);  
}!

If the first printf outputs 100 5 5 10, what will the
other two printf output?!
!a) 101 10 5 10 then 101 11 5 11  
b) 104 10 5 10 then 104 11 5 11  
c) 101 <other> 5 10 then 101 <3-others>  
d) 104 <other> 5 10 then 104 <3-others>  
e) One of the two printfs causes an ERROR !

Peer Instruction!

A[1]
5 10

A[0] p

CS61C L04 Introduction to C (pt 2) (32)! Garcia © UCB!

int main(void){  
int A[] = {5,10};  
int *p = A;  

printf(“%u %d %d %d\n”,p,*p,A[0],A[1]);  
 p = p + 1;  
printf(“%u %d %d %d\n”,p,*p,A[0],A[1]);  
*p = *p + 1;  
printf(“%u %d %d %d\n”,p,*p,A[0],A[1]);  
}!

If the first printf outputs 100 5 5 10, what will the
other two printf output?!
!a) 101 10 5 10 then 101 11 5 11  
b) 104 10 5 10 then 104 11 5 11  
c) 101 <other> 5 10 then 101 <3-others>  
d) 104 <other> 5 10 then 104 <3-others>  
e) One of the two printfs causes an ERROR !

Peer Instruction Answer!

A[1]
5 10

A[0] p

CS61C L04 Introduction to C (pt 2) (33)! Garcia © UCB!

Pointer Arithmetic Peer Instruction Q!

How many of the following are invalid?!
I.  pointer + integer!
II.  integer + pointer!
III.  pointer + pointer!
IV.  pointer – integer!
V.  integer – pointer!
VI.  pointer – pointer!
VII.  compare pointer to pointer!
VIII.  compare pointer to integer!
IX.  compare pointer to 0!
X.  compare pointer to NULL!

#invalid
a)1

 b)2
 c)3
 d)4
 e)5

CS61C L04 Introduction to C (pt 2) (34)! Garcia © UCB!

#invalid
a)1

 b)2
 c)3
 d)4
 e)5

•  How many of the following are invalid?!
I.  pointer + integer!
II.  integer + pointer!
III.  pointer + pointer!
IV.   pointer – integer!
V.  integer – pointer!
VI.  pointer – pointer!
VII.  compare pointer to pointer!
VIII.  compare pointer to integer!
IX.  compare pointer to 0!
X.  compare pointer to NULL!

Pointer Arithmetic Peer Instruction Ans!

ptr + 1!
1 + ptr!

ptr + ptr!
ptr - 1!
1 - ptr!

ptr - ptr!
ptr1 == ptr2!

ptr == 1!
ptr == NULL!
ptr == NULL!

CS61C L04 Introduction to C (pt 2) (35)! Garcia © UCB!

“And in Conclusion…”!
• Pointers and arrays are virtually same!
• C knows how to increment pointers!
• Create abstraction with structures!

