Reference slides

You ARE responsible for the
material on these slides (they’re
just taken from the readin
anyway). These were the slides
that generated the fewest
questions in \{ea_rs past (i.e.,
those you could just read and
ully understand.)

ﬂ CS61C L04 Introduction to C (pt 2) (1)

Garcia, Fall 2011 © UCB

C String Standard Functions

eint strlen(char *string);
+ compute the length of string

eint strcmp(char *strl, char *str2);
» return 0 if strl and str2 are identical (how is
this different from strl == str2?)
echar *strcpy(char *dst, char *src);

+ copy the contents of string src to the memory
at dst. The caller must ensure that dst has
enough memory to hold the data to be copied.

ﬂ CS61C L04 Introduction to C (pt 2) (3)

Garcia, Fall 2011 © UCB

Pointers & Allocation (1/2)

« After declaring a pointer:
int *ptr;
ptr doesn’t actually point to anything

yet (it actually points somewhere - but
don’t know where!). We can either:

» make it point to something that already
exists, or

- allocate room in memory for something
new that it will point to... (next time)

C Strings
« A string in C is just an array of
characters.
char string[] = "abc";

*How do you tell how long a string is?
+ Last character is followed by a 0 byte
(null terminator)
int strlen(char s[])
{
int n = 0;
while (s[n] '= 0) n++;
return n;

Garcia, Fall 2011 © UCB

Administrivia
*Read K&R 6 by the next lecture

*There is a language called D!
- www.digitalmars.com/d/

«Homework expectations
* Readers don’t have time to fix your
programs which have to run on lab
machines.

» Code that doesn’t compile or fails all of
the autograder tests = 0

Garcia, Fall 2011 © UCB

Garcia, Fall 2011 © UCB

Pointers & Allocation (2/2)

* Pointing to something that already

exists:
int *ptr, varl, var2;
varl = 5;
ptr = &varl;
var2 = *ptr;

evarl and var2 have room implicitly
allocated for them.

ptr var1| 5 | var2| 5 |

Garcia, Fall 2011 © UCB

Arrays (one elt past array must be valid)

¢ Array size n; want to access from 0 to
n-1, but test for exit by comparing to
address one element past the array

int ar[10], *p, *q, sum = 0;

p = &ar[0]; g = &ar[10];

while (p '= q)
/* sum = sum + *p; p=p + 1; */
sum += *p++;

+Is this legal?
«C defines that one element past end of

array must be a valid address, i.e., not
wcause an bus error or address error

CS61C L04 Introduction to C (pt 2) (7) Garcia, Fall 2011 © UCB

Pointer Arithmetic to Copy memory

«We can use pointer arithmetic to
“walk” through memory:

void copy(int *from, int *to, int n) {
int i;
for (i=0; i<n; i++) {
*to++ = *from++;
}
}

*Note we had to pass size (n) to copy

ﬂ CS61C L04 Introduction to C (pt 2) (9) Garcia, Fall 2011 © UCB

Pointer Arithmetic (2/2)

«C knows the size of the thing a pointer
points to — every addition or
subtraction moves that many bytes.

1 byte for a char, 4 bytes for an int, etc.

*So the following are equivalent:
int get(int array[], int n)

{
return (array[n]);
// OR...
return * (array + n);
}

Q CS61C L04 Introduction to C (pt 2) (1) Garcia, Fall 2011 © UCB

Pointer Arithmetic

*So what’s valid pointer arithmetic?
» Add an integer to a pointer.
- Subtract 2 pointers (in the same array).
- Compare pointers (<, <=, ==, 1=, >, >=)
+ Compare pointer to NULL (indicates that

the pointer points to nothing).
« Everything else is illegal since it
makes no sense:

» adding two pointers
* multiplying pointers

Q(« subtract pointer from integer

CS61C L04 Introduction to C (pt 2) (8) Garcia, Fall 2011 © UCB

Pointer Arithmetic (1/2)

*Since a pointer is just a mem address, we
can add to it to traverse an array.

*p+1 returns a ptr to the next array elt.
e *p++ VS (*p)++ ?
* X =*p++ =x=*p ; p= p+1;

L (*p)++=>x = *p ; *p = *p + 1;

*What if we have an array of large structs
(objects)?

+ C takes care of it: In reality, p+1 doesn’t add
1 to the memory address, it adds the size of
Q(the array element.

CS61C L04 Introduction to C (pt 2) (10) Garcia, Fall 2011 © UCB

Pointer Arithmetic Summary
ex = *(p+l) ?
=>x = *(p+l) ;
ex = *p+1?

=x = (*p) + 1 ;

fre coe

x =*p ; *p =*p + 1;
*p++?(*p++)?*(p)++?
=x =*p ; p= p+1;
ex = *++p ?
= p=p+1; x="*p;

o

*X

¢ Lesson?

+ Using anything but the standard *p++, (*p) ++
causes more)B)roblems than it solves!

CS61C L04 Introduction to C (pt 2)

Garcia, Fall 2011 © UCB

Arrays vs. Pointers

*«An array name is a read-only pointer
to the 0" element of the array.

* An array parameter can be declared as
an array or a pointer; an array
argument can be passed as a pointer.

int strlen(char s[]) int strlen(char *s)

{
int n = 0; int n = 0;
while (s[n] '= 0) while (s[n] !'= 0)

n++; n++;
return n; return n;
} }

Could be written:

ﬂ while (s[n])
861G Lo4 Inroduction to C (12) (13) Garcia, Fall 2011 0 UGB

Segmentation Fault vs Bus Error?
*http://www.hyperdictionary.com/

« Bus Error

« A fatal failure in the execution of a machine
language instruction resulting from the
processor detecting an anomalous condition on
its bus. Such conditions include invalid address
alignment (accessing a multi-byte number at an
odd address), accessing a physical address that
does not correspond to any device, or some
other device-specific hardware error. A bus
error triggers a processor-level exception which
Unix translates into a “SIGBUS” signal which, if
not caught, will terminate the current process.

« Segmentation Fault

* An error in which a running Unix Frogram i
attempts to access memory not allocated to it
and terminates with a segmentation violation

Q error and usually a core dump.

CS61C L04 Introduction to C (pt2) (14) Garcia, Fall 2011 © UCB

C Pointer Dangers

*Unlike Java, C lets you cast a value of
any type to any other type without
performing any checking.

int x = 1000;
int *p = x; /* invalid */
int *q = (int *) x; /* valid */

*The first pointer declaration is invalid
since the types do not match.

*The second declaration is valid C but is
almost certainly wrong

ﬂ -Is it ever correct?
cso10Losmctonton 612115 oozt oucs

C Strings Headaches

*One common mistake is to forget to
allocate an extra byte for the null
terminator.

*More generally, C requires the
programmer to manage memory
manually (unlike Java or C++).

* When creating a long string by
concatenating several smaller strings,
the programmer must insure there is
enough space to store the full string!

* What if you don’t know ahead of time
how big your string will be?

Q - Buffer overrun security holes!

CS61C L04 Introduction to C (pt 2) (16) Garcia, Fall 2011 © UCB

Common C Error

*There is a difference between
assignment and equality

a=>b is assignment
a == is an equality test
*This is one of the most common errors
for beginning C programmers!

+ One solution (when comparing with
constant) is to put the var on the right!
If you happen to use =, it won’t compile.

if (3 == a) {

Q CS61C L04 Introduction to C (pt2) (17) Garcia, Fall 2011 © UCB

Kilo, Mega, Giga, , Peta, Exa, , Yotta

1. Kid meets giant Texas people exercising zen-like yoga. — Rolf O

2. Kind men give ten percent extra, zestfully, youthfully. - Hava E

3. Kissing Mentors Gives Testy Persistent Extremists Zealous Youthfulness. -
Gary M

4. Kindness means giving, teaching, permeating excess zeal yourself. — Hava E

5. Killing messengers gives terrible people exactly zero, yo

6. Kindergarten means giving teachers perfect examples (of) zeal (&) youth

7. Kissing mediocre girls/guys teaches people (to) expect zero (from) you

8. Kinky Mean Girls Teach Penis-Extending Zen Yoga

9. Kissing Mel Gibson, Tom Petty exclaimed: “Zesty, yo!” — Dan G

10. Kissing me gives ten percent extra zeal & youth! — Dan G (borrowing parts)

@ CS61C L04 Introduction to C (pt 2) (18) Garcia, Fall 2011 © UCB

C structures : Overview

*A struct is a data structure
composed from simpler data types.

+Like a class in Java/C++ but without
methods or inheritance.
struct point { /* type definition */
int x;
int y;
void PrintPoint (struct point p)
{ Asalways in C, the argument is passed by “value” - a copy is made.

printf (*(%d,%d)”, p.x, p.y);

struct point pl = {0,10}; /* x=0, y=10 */

ﬂrint?oint (pl);
861G Lo4 Introduction to C (12 (19) Garcia Fall 2011 © UcB

C structures: Pointers to them

< Usually, more efficient to pass a
pointer to the struct.

*The C arrow operator (->)
dereferences and extracts a structure
field with a single operator.

*The following are equivalent:

struct point *p;

/* code to assign to pointer */
printf (“x is %d\n”, (*p).x);
printf (“x is %d\n”, p->x);

Q CS61C L04 Introduction to C (pt 2) (20) Garcia, Fall 2011 © UCB

How big are structs?

*Recall C operator sizeof () which
gives size in bytes (of type or variable)

*How big is sizeof (p)?

struct p {
char x;
int y;
}i
+5 bytes? 8 bytes?
- Compiler may word align integer y

ﬂ CS61C L04 Introduction to C (pt 2) (21) Garcia, Fall 2011 © UCB

Linked List Example

eLet’s look at an example of using
structures, pointers, malloc (), and
free () to implement a linked list of
strings.

/* node structure for linked list */
struct Node {

char *value;

struct Node *next;

};

Recursive

Q definition!
881G Lo nrodusion 0. (512) (22 Garta,Fa 2011 ¢ uca

typedef simplifies the code

struct Node {
char *value: String value;
struct Node *next;

}i

/* "typedef" means define a new type */
typedef struct Node NodeStruct;

typedef struct Node {
char *value;

struct Node *next;
} NodeStruct;

/* Note similarity! */
/* To define 2 nodes */

... THEN struct Node {
char *value;
struct Node *next;

typedef NodeStruct *List;
} nodel, node2;

typedef char *String;

Q CS61C L04 Introduction to C (pt 2) (23) Garcia, Fall 2011 © UCB

Linked List Example

/* Add a string to an existing list */
List cons(String s, List list)
{
List node = (List) malloc(sizeof (NodeStruct)) ;

node->value = (String) malloc (strlen(s) + 1);
strcpy (node->value, s);

node->next = list;

return node;

String sl = "abc", s2 = "cde";
List thelList = NULL;
thelist = cons(s2, thelist);
thelList = cons(sl, thelist);
/* or, just like (cons sl (cons s2 nil)) */

thelList = cons(sl, cons(s2, NULL));

Linked List Example Linked List Example
/* Add a string to an existing list, 2nd call */ /* Add a string to an existing list, 2nd call */
List cons(String s, List list) List cons(String s, List list)
{ {
List node = (List) malloc(sizeof (NodeStruct)) ; List node = (List) malloc(sizeof (NodeStruct)) ;
node->value = (String) malloc (strlen(s) + 1); node->value = (String) malloc (strlen(s) + 1);
strcpy (node->value, s); strcpy (node->value, s);
node->next = list; node->next = list;
return node; return node;
} }
list: " list:
node:
e A [::EEEEﬂ_>444444— A
e 2 e
S n S

Linked List Example

/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{

{
List node = (List) malloc(sizeof (NodeStruct)) ; List node = (List) malloc(sizeof (NodeStruct));

Linked List Example

/* Add a string to an existing list, 2nd call */
List cons(String s, List list)

node->value = (String) malloc (strlen(s) + 1);
strcpy (node->value, s);

node->next = list;

return node;

node->value = (String) malloc (strlen(s) + 1);
strcpy (node->value, s);

node->next = list;

return node;

} }
q list: " list:
noae: node:
LA — E“" .
L ‘ 7| NuLL | ‘ 71| NuLL
? S: ? S:
wapon

noonom

ﬂ CSB1C L04 Introduction to C (pt 2) (27) Garcia, Fall 2011 © UCB Q CS61C L04 Introduction to C (pt 2) (28) Garcia, Fall 2011 © UCB

Linked List Example

/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{

{
List node = (List) malloc(sizeof (NodeStruct)) ; List node = (List) malloc(sizeof (NodeStruct)) ;

Linked List Example

/* Add a string to an existing list, 2nd call */
List cons(String s, List list)

node->value = (String) malloc (strlen(s) + 1);
strcpy (node->value, s);

node->next = list;

return node;

node->value = (String) malloc (strlen(s) + 1);
strcpy (node->value, s);

node->next = list;

return node;

}
list:
node: P node: P
| L — ; 7] NuLe [— 7 NuLe
— S
"apeh

"apen
ﬂ CSB1C L04 Introduction to C (pt 2) (29) Garcia, Fall 2011 © UCB Q CS61C L04 Introduction to C (pt 2) (30) Garcia, Fall 2011 © UCB

Peer Instruction

int maJ.n(vo:L i
int A[]_ 5 0};
int *p A[O0]A[1] P
printf(“%u_%d %d %d\n”,p,*p,A[0],A[1]);
pglntf(”%u 4 sa 2d\n”,p,*p,A[0],A[1]);

grlntf(”%u éd ¢%d %d\n”,p,*p,A[0],A[1]);

If the first print £ outputs 100 5 5 10, what will the
other two print £ output?

a) 101 10 5 10 then 101 11 5 11

b) 104 10 5 10 then 104 5 11

c) 101 <other> 5 10 then 101 <3 others>

d) 104 <other> 5 10 then 104 <3-others>

e) One of the two printfs causes an ERROR

ﬂ CS61C L04 Introduction to C (pt 2) (31) Garcia, Fall 2011 © UCB

Peer Instruction Answer

int ma:m(vm.d)i
int A[] 0};
int *p A[O0]A[1] P

pr:.ntf(”iul%d %d %d\n”,p,*p,A[0],A[1]);
p?émtf(" u 4d 2d sd\n",p,*p,a[0],A[1]);

grlntf(”%u %d %d %d\n”,p,*p,A[0],A[1l]);

If the first printf outputs 100 5 5 10, what will the
other two print £ output?

0110 5 10 +hen 101 11 5 11
(b) 04 10 5 10 then 104 11 5 11
fet> 3 10 then T3-OCNers>

C U <OtT U
d 04 <other> 5 10 then 104 <3-others>
e) One of the two printfs causes an ERROR

Q CS61C L04 Introduction to C (pt 2) (32) Garcia, Fall 2011 © UCB

Pointer Arithmetic Peer Instruction Q

How many of the following are invalid? | #invalid
pointer + integer a)l

II integer + pointer b)2

. pointer + pointer c)3

Iv. pointer — integer d) 4

V. integer — pointer e)5

VL. pointer — pointer

VIl. compare pointer to pointer

VIll. compare pointer to integer

IX. compare pointer to 0
! X. compare pointer to NULL

CS61C L04 Introduction to C (pt 2) (33) Garcia, Fall 2011 © UCB

“And in Conclusion...”

¢Pointers and arrays are virtually same
«C knows how to increment pointers
«Create abstraction with structures

Q CS61C L04 Introduction to C (pt 2) (35) Garcia, Fall 2011 © UCB

Pointer Arithmetic Peer Instruction Ans
* How many of the following are invalid?

l. pointer + integer ptr +1

Il. integer + pointer 1+ ptr

. pointer + pointer ptr + ptr

IV. pointer — integer ptr-1

V. integer — pointer 1-ptr

VL. pointer — pointer ptr-ptr[4ivalia
VIl. compare pointer to pointer ptr1 ==ptr2| ~— a)1
VIIl. compare pointer to integer ptr == b) 2

IX. compare pointer to 0 ptr == NULL

X. compare pointer to NULL ptr == NULL g; g

Q CS61C L04 Introduction to C (pt 2) (34) Garcia, Fall 2011 © UCB

