
inst.eecs.berkeley.edu/~cs61c
UCB CS61C : Machine

Structures
Lecture 07

Introduction to MIPS : Decisions II

2014-02-05
Guest Lecturer

Alan Christopher

“SO MANY GADGETS, SO MANY ACHES” NYT

www.nytimes.com/2010/02/19/technology/19china.html

Laptops “do not meet any of the ergonomic
requirements for a computer system”. Touch
screens “should not be used heavily for
typing” Texting is a problem because thumb
bones have two bones instead of three … “if
you want to get injured, do a lot of texting”.
Advice? Take a break

CS61C L07 Introduction to MIPS : Decisions II (2) Garcia, Spring 2014 © UCB

Review
 Memory is byte-addressable, but lw and sw

access one word at a time.
 A pointer (used by lw and sw) is just a memory

address, so we can add to it or subtract from it
(using offset).

 A Decision allows us to decide what to execute
at run-time rather than compile-time.

 C Decisions are made using conditional
statements within if, while, do while, for.

 MIPS Decision making instructions are the
conditional branches: beq and bne.

 New Instructions:
lw, sw, beq, bne, j

CS61C L07 Introduction to MIPS : Decisions II (3) Garcia, Spring 2014 © UCB

Last time: Loading, Storing bytes 1/2
 In addition to word data transfers

(lw, sw), MIPS has byte data transfers:
 load byte: lb
 store byte: sb

 same format as lw, sw
 E.g., lb $s0, 3($s1)

 contents of memory location with address =
sum of “3” + contents of register s1 is copied to
the low byte position of register s0.

CS61C L07 Introduction to MIPS : Decisions II (4) Garcia, Spring 2014 © UCB

x

Loading, Storing bytes 2/2
 What do with other 24 bits in the 32 bit

register?
 lb: sign extends to fill upper 24 bits

 Normally don’t want to sign extend chars
 MIPS instruction that doesn’t

sign extend when loading bytes:
 load byte unsigned: lbu

byte
loaded…is copied to “sign-extend”

This bit

xxxx xxxx xxxx xxxx xxxx xxxx zzz zzzz

CS61C L07 Introduction to MIPS : Decisions II (5) Garcia, Spring 2014 © UCB

Overflow in Arithmetic (1/2)
 Reminder: Overflow occurs when there is

a “mistake” in arithmetic due to the limited
precision in computers.

 Example (4-bit unsigned numbers):
15 1111

+ 3 + 0011
18 10010

 But we don’t have room for 5-bit solution, so
the solution would be 0010, which is +2, and
“wrong”.

CS61C L07 Introduction to MIPS : Decisions II (6) Garcia, Spring 2014 © UCB

Overflow in Arithmetic (2/2)
 Some languages detect overflow (Ada),

some don’t (most C implementations)
 MIPS solution is 2 kinds of arithmetic instructs:

 These cause overflow to be detected
 add (add)
 add immediate (addi)
 subtract (sub)

 These do not cause overflow detection
 add unsigned (addu)
 add immediate unsigned (addiu)
 subtract unsigned (subu)

 Compiler selects appropriate arithmetic
 MIPS C compilers produce addu, addiu, subu

CS61C L07 Introduction to MIPS : Decisions II (7) Garcia, Spring 2014 © UCB

Two “Logic” Instructions

 Here are 2 more new instructions
 Shift Left: sll $s1,$s2,2 #s1=s2<<2

 Store in $s1 the value from $s2 shifted 2 bits to
the left (they fall off end), inserting 0’s on right; <<
in C.

 Before:0000 0002hex
0000 0000 0000 0000 0000 0000 0000 0010two

 After: 0000 0008hex
0000 0000 0000 0000 0000 0000 0000 1000two

 What arithmetic effect does shift left have?

 Shift Right: srl is opposite shift; >>
CS61C L07 Introduction to MIPS : Decisions II (8) Garcia, Spring 2014 © UCB

Loops in C/Assembly (1/3)
 Simple loop in C; A[] is an array of ints

do { g = g + A[i];
i = i + j;

} while (i != h);
 Rewrite this as:

Loop: g = g + A[i];
i = i + j;
if (i != h) goto Loop;

 Use this mapping:
g, h, i, j, &A[0]

$s1, $s2, $s3, $s4, $s5

CS61C L07 Introduction to MIPS : Decisions II (9) Garcia, Spring 2014 © UCB

Loops in C/Assembly (2/3)
 Final compiled MIPS code:
Loop: sll $t1,$s3,2 # $t1= 4*I

addu $t1,$t1,$s5 # $t1=addr A+4i
lw $t1,0($t1) # $t1=A[i]
addu $s1,$s1,$t1 # g=g+A[i]
addu $s3,$s3,$s4 # i=i+j
bne $s3,$s2,Loop # goto Loop

if i!=h

 Original code:
Loop: g = g + A[i];

i = i + j;
if (i != h) goto Loop;

CS61C L07 Introduction to MIPS : Decisions II (10) Garcia, Spring 2014 © UCB

Loops in C/Assembly (3/3)
 There are three types of loops in C:

 while
 do … while
 for

 Each can be rewritten as either of the other
two, so the method used in the previous
example can be applied to these loops as
well.

 Key Concept: Though there are multiple
ways of writing a loop in MIPS, the key to
decision-making is conditional branch

CS61C L07 Introduction to MIPS : Decisions II (11) Garcia, Spring 2014 © UCB

Administrivia
 HW2 is due Sunday at 23:59:59

CS61C L07 Introduction to MIPS : Decisions II (12) Garcia, Spring 2014 © UCB

Inequalities in MIPS (1/4)
 Until now, we’ve only tested equalities

(== and != in C). General programs need to
test < and > as well.

 Introduce MIPS Inequality Instruction:
 “Set on Less Than”
 Syntax: slt reg1,reg2,reg3
 Meaning:

if (reg2 < reg3)
reg1 = 1;

else reg1 = 0;
“set” means “change to 1”,
“reset” means “change to 0”.

reg1 = (reg2 < reg3);

Same thing…

CS61C L07 Introduction to MIPS : Decisions II (13) Garcia, Spring 2014 © UCB

Inequalities in MIPS (2/4)
 How do we use this? Compile by hand:

if (g < h) goto Less; #g:$s0, h:$s1
 Answer: compiled MIPS code…

slt $t0,$s0,$s1 # $t0 = 1 if g<h
bne $t0,$0,Less # goto Less

if $t0!=0
(if (g<h)) Less:

 Register $0 always contains the value 0, so bne
and beq often use it for comparison after an slt
instruction.

 A slt bne pair means if(… < …)goto…

CS61C L07 Introduction to MIPS : Decisions II (14) Garcia, Spring 2014 © UCB

Inequalities in MIPS (3/4)
 Now we can implement <,

but how do we implement >, ≤ and ≥ ?
 We could add 3 more instructions, but:

 MIPS goal: Simpler is Better
 Can we implement ≤ in one or more

instructions using just slt and branches?
 What about >?
 What about ≥?

CS61C L07 Introduction to MIPS : Decisions II (15) Garcia, Spring 2014 © UCB

Inequalities in MIPS (4/4)
a:$s0, b:$s1

slt $t0,$s0,$s1 # $t0 = 1 if a<b
beq $t0,$0,skip # skip if a >= b

<stuff> # do if a<b
skip:

Two independent variations possible:
Use slt $t0,$s1,$s0 instead of
slt $t0,$s0,$s1
Use bne instead of beq

CS61C L07 Introduction to MIPS : Decisions II (16) Garcia, Spring 2014 © UCB

Immediates in Inequalities
 There is also an immediate version of slt to

test against constants: slti
 Helpful in for loops

if (g >= 1) goto Loop
Loop: . . .

slti $t0,$s0,1 # $t0 = 1 if
$s0<1 (g<1)

beq $t0,$0,Loop # goto Loop
if $t0==0

(if (g>=1))

C

M
I
P
S

An slt beq pair means if(… ≥ …)goto…

CS61C L07 Introduction to MIPS : Decisions II (17) Garcia, Spring 2014 © UCB

What about unsigned numbers?
 Also unsigned inequality instructions:

sltu, sltiu
…which sets result to 1 or 0 depending on

unsigned comparisons
 What is value of $t0, $t1?

($s0 = FFFF FFFAhex, $s1 = 0000 FFFAhex)
slt $t0, $s0, $s1

sltu $t1, $s0, $s1

CS61C L07 Introduction to MIPS : Decisions II (18) Garcia, Spring 2014 © UCB

MIPS Signed vs. Unsigned – diff meanings!

 MIPS terms Signed/Unsigned “overloaded”:
 Do/Don't sign extend

 (lb, lbu)
 Do/Don't overflow

 (add, addi, sub, mult, div)
 (addu, addiu, subu, multu, divu)

 Do signed/unsigned compare
 (slt, slti/sltu, sltiu)

CS61C L07 Introduction to MIPS : Decisions II (19) Garcia, Spring 2014 © UCB

What C code properly fills in
the blank in loop below?

Peer Instruction

do {i--;} while(__);

Loop:addi $s0,$s0,-1 # i = i - 1
slti $t0,$s1,2 # $t0 = (j < 2)
beq $t0,$0 ,Loop # goto Loop if $t0 == 0
slt $t0,$s1,$s0 # $t0 = (j < i)
bne $t0,$0 ,Loop # goto Loop if $t0 != 0

a) j < 2 && j < i
a) j ≥ 2 && j < i
b) j < 2 && j ≥ i
b) j ≥ 2 && j ≥ i
c) j > 2 && j < i
c) j < 2 || j < i
d) j ≥ 2 || j < i
d) j < 2 || j ≥ i
e) j ≥ 2 || j ≥ i
e) j > 2 || j < i

($s0=i, $s1=j)

CS61C L07 Introduction to MIPS : Decisions II (20) Garcia, Spring 2014 © UCB

“And in conclusion…”
 To help the conditional branches make

decisions concerning inequalities, we
introduce: “Set on Less Than” called
slt, slti, sltu, sltiu

 One can store and load (signed and
unsigned) bytes as well as words with lb, lbu

 Unsigned add/sub don’t cause overflow
 New MIPS Instructions:

sll, srl, lb, lbu
slt, slti, sltu, sltiu
addu, addiu, subu

CS61C L07 Introduction to MIPS : Decisions II (21) Garcia, Spring 2014 © UCB

Bonus Slides

CS61C L07 Introduction to MIPS : Decisions II (22) Garcia, Spring 2014 © UCB

Example: The C Switch Statement (1/3)

 Choose among four alternatives depending
on whether k has the value 0, 1, 2 or 3.
Compile this C code:

switch (k) {
case 0: f=i+j; break; /* k=0 */
case 1: f=g+h; break; /* k=1 */
case 2: f=g–h; break; /* k=2 */
case 3: f=i–j; break; /* k=3 */

}

CS61C L07 Introduction to MIPS : Decisions II (23) Garcia, Spring 2014 © UCB

Example: The C Switch Statement (2/3)

 This is complicated, so simplify.
 Rewrite it as a chain of if-else statements,

which we already know how to compile:
if(k==0) f=i+j;

else if(k==1) f=g+h;
else if(k==2) f=g–h;
else if(k==3) f=i–j;

 Use this mapping:
f:$s0, g:$s1, h:$s2,

i:$s3, j:$s4, k:$s5

CS61C L07 Introduction to MIPS : Decisions II (24) Garcia, Spring 2014 © UCB

Example: The C Switch Statement (3/3)

 Final compiled MIPS code:
bne $s5,$0,L1 # branch k!=0
add $s0,$s3,$s4 #k==0 so f=i+j
j Exit # end of case so Exit

L1: addi $t0,$s5,-1 # $t0=k-1
bne $t0,$0,L2 # branch k!=1
add $s0,$s1,$s2 #k==1 so f=g+h
j Exit # end of case so Exit

L2: addi $t0,$s5,-2 # $t0=k-2
bne $t0,$0,L3 # branch k!=2
sub $s0,$s1,$s2 #k==2 so f=g-h
j Exit # end of case so Exit

L3: addi $t0,$s5,-3 # $t0=k-3
bne $t0,$0,Exit # branch k!=3
sub $s0,$s3,$s4 # k==3 so f=i-j

Exit:

