CS 61C: Great Ideas in
Computer Architecture

MIPS Instruction
Representation Il

Dan Garcia

Review of Last Lecture

* Simplifying MIPS: Define instructions to be
same size as data word (one word) so that
they can use the same memory

— Computer actually stores programs as a series of
these 32-bit numbers

 MIPS Machine Language Instruction:
32 bits representing a single instruction

R:\gpcode‘ rs | rt | rd |shamt] funct |
I:\gpcode‘ rs | rt | immediate |

Great Idea #1: Levels of Representation/
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Higher-Level Language
Program (e.g. C)

Eompiter
\ 4 lw StO, O(SZ) We
Assembly Language lw 5t 4(S2) are
Program (e.g. MIPS) sw 5tl, 0($2) here
sw St0, 4(S2)
Assernrbier
. 0000 1001 1100 0110 1010 1111 0101 1000
Machine Language 1010 1111 0101 1000 0000 1001 1100 0110
Program (MIPS) 1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 10101111

Machine
Interpretation

Hardware Architecture Description
(e.g. block diagrams)

Architecture l

Implementation

Logic Circuit Description
(Circuit Schematic Diagrams)

Agenda

|-Format
— Branching and PC-Relative Addressing

Administrivia
J-Format
Pseudo-instructions

l-Format Immediates

* immediate (16): two’s complement number

— All computations done in words, so 16-bit
immediate must be extended to 32 bits

— Green Sheet specifies ZeroExtlImm or SignExtImm
based on instruction
* Can represent 2'° different immediates

— This is large enough to handle the offset in a
typical 1w/sw, plus the vast majority of values for
sltl

Dealing With Large Immediates

e How do we deal with 32-bit immediates?

— Sometimes want to use immediates > + 21> with
addi, 1w, swand s1ti

— Bitwise logic operations with 32-bit immediates

* Solution: Don’t mess with instruction
formats, just add a new instruction

* Load Upper Immediate (1u1i)
—1lul reg, imm

— Moves 16-bit imm into upper half (bits 16-31) of
reqg and zeros the lower half (bits 0-15)

lui Example

* Want: addiu $t0, St0, OxABABCDCD
— This is a pseudo-instruction!

* Translates into:

lui $at, OxABAB # upper 16
ori Sat,Sat,0xCDCD # lower 16
addu $tO,StO, # move

Only the assembler gets to use $Sat

* Now we can handle everything with a 16-bit
immediate!

Branching Instructions

* begandbne
— Need to specify an address to go to

— Also take two registers to compare

e Use |-Format:

3
Epcode‘ rs ‘ rt ‘ immediate

— opcode specifies beq (4) vs. bne (5)
— rs and rt specify registers

— How to best use immediate to specify
addresses?

Branching Instruction Usage

* Branches typically used for loops (1f-else,
while, for)
— Loops are generally small (< 50 instructions)

— Function calls and unconditional jumps handled
with jump instructions (J-Format)

* Recall: Instructions stored in a localized area
of memory (Code/Text)
— Largest branch distance limited by size of code

— Address of current instruction stored in the
program counter (PC)

PC-Relative Addressing

* PC-Relative Addressing: Use the immediate
field as a two’s complement offset to PC

— Branches generally change the PC by a small
amount

— Can specify + 21> addresses from the PC

* So just how much of memory can we reach?

10

Branching Reach

e Recall: MIPS uses 32-bit addresses

— Memory is byte-addressed

* |nstructions are word-aligned

— Address is always multiple of 4 (in bytes), meaning it
ends with 0b00 in binary

— Number of bytes to add to the PC will always be a
multiple of 4

* Immediate specifies words instead of bytes
— Can now branch * 21> words

— We can reach 2 instructions = 218 bytes around PC

11

Branch Calculation

 |f we don’t take the branch:
— PC = PC + 4 = nextinstruction

e |f we do take the branch:
—PC = (PC+4) + (immediate*4)

e Observations:

— immediate is number of instructions to jump
(remember, specifies words) either forward (+) or
backwards ()

— Branch from PC+4 for hardware reasons; will be
clear why later in the course

12

Branch Example (1/2)

Start counting from
* MIPS Code: instruction AFTER the
Loop: beq $9,S$0, branch

addu $8,58,5$10
addiu $9,$9,-1 El

J
End:
* |-Format fields:
opcode =4 (look up on Green Sheet)
rs=9 (first operand)
rt=0 (second operand)

immediate =3

13

Branch Example (2/2)

e MIPS Code:

Loop: beq $9,$0,
addu $8,$8,510
addiu $9,59, -1

J
End:

Field representation (decimal): .

3
2 [5 [o] 3 |

Field representation (binary): 0

3
Ilooowo\omoﬂooooo\ 0000000000000011 |

14

Questions on PC-addressing

* Does the value in branch immediate field
change if we move the code?
— If moving individual lines of code, then yes
— If moving all of code, then no

 What do we do if destination is > 2%°
instructions away from branch?

— Other instructions save us

— beqg $s0, 50, bne S5s0, $0,
next instr -]
next: # next instr

15

Agenda

|-Format
— Branching and PC-Relative Addressing

Administrivia

J-Format
Pseudo-instructions

Bonus: Assembly Practice
Bonus: Disassembly Practice

16

e Mic

* Proj

Administrivia

term update
ect update

17

Agenda

|-Format
— Branching and PC-Relative Addressing

Administrivia

J-Format
Pseudo-instructions

Bonus: Assembly Practice
Bonus: Disassembly Practice

18

J-Format Instructions (1/4)

 For branches, we assumed that we won’t
want to branch too far, so we can specify a

change in the PC
e For general jumps (7 and jal), we may jump
to anywhere in memory

— |Ideally, we would specify a 32-bit memory address
to jump to

— Unfortunately, we can’t fit both a 6-bit opcode
and a 32-bit address into a single 32-bit word

19

J-Format Instructions (2/4)

3- Define two “fields” of these bit widths:

6 | 26

* As usual, each field has a name:

3
Epcode‘ target address

* Key Concepts:

— Keep opcode field identical to R-Format and
I-Format for consistency

— Collapse all other fields to make room for large
target address

20

J-Format Instructions (3/4)

* We can specify 22° addresses

— Still going to word-aligned instructions, so add 0b00
as last two bits (multiply by 4)

— This brings us to 28 bits of a 32-bit address
* Take the 4 highest order bits from the PC

— Cannot reach everywhere, but adequate almost all of
the time, since programs aren’t that long

— Only problematic if code straddles a 256 MB boundary

* If necessary, use 2 jumps or jr (R-Format)
instead

21

J-Format Instructions (4/4)

* Jump instruction:
— New PC ={(PC+4)[31..28], target address, 00 }

* Notes:

—{,, } means concatenation
{ 4 bits, 26 bits, 2 bits } = 32 bit address

* Book uses || instead

— Array indexing: [31..28] means highest 4 bits
— For hardware reasons, use PC+4 instead of PC

22

Question: When combining two C files into one Q
executable, we can compile them independently E
and then merge them together.

When merging two or more binaries:

1) Jump instructions don’t require any changes
2) Branch instructions don’t require any
changes

1 2

)
o) F 71
c)

d T T

23

Agenda

|-Format
— Branching and PC-Relative Addressing

Administrivia

J-Format
Pseudo-instructions

Bonus: Assembly Practice
Bonus: Disassembly Practice

24

Assembler Pseudo-Instructions

Certain C statements are implemented
unintuitively in MIPS

— e.g. assignment (a=Db) via addition with O

MIPS has a set of “pseudo-instructions” to make

programming easier

— More intuitive to read, but get translated into actual
instructions later

Example:

move dst, src translated into
addi dst, src, 0

25

Assembler Pseudo-Instructions

List of pseudo-instructions:
http://en.wikipedia.org/wiki/MIPS architecture#Pseudo instructions

— List also includes instruction translation

Load Address (1a)

— 1la dst, label
— Loads address of specified label into dst

Load Immediate (11)
— 11 dst,1mm
— Loads 32-bit immediate into dst

MARS has additional pseudo-instructions
— See Help (F1) for full list

26

Assembler Register

* Problem:

— When breaking up a pseudo-instruction, the
assembler may need to use an extra register

— If it uses a regular register, it’ll overwrite
whatever the program has put into it

e Solution:

— Reserve a register (S1 or Sat for “assembler
temporary”) that assembler will use to break up
pseudo-instructions

— Since the assembler may use this at any time, it’s
not safe to code with it

27

MAL vs. TAL

* True Assembly Language (TAL)

— The instructions a computer understands and
executes

 MIPS Assembly Language (MAL)

— Instructions the assembly programmer can use
(includes pseudo-instructions)

— Each MAL instruction becomes 1 or more TAL
iInstruction

* TALC MAL

Summary

* |-Format: instructions with immediates, 1w/

sw (offset is immediate), and beg/bne
— But not the shift instructions
— Branches use PC-relative addressing
I: \gpcode‘ rs ‘ rt ‘ immediate ‘

e J-Format: j and jal (but not jr)
— Jumps use absolute addressing
J:\gpcode‘ target address ‘

e R-Format: all other instructions
R:\gpcode‘ rs | rt | rd |shamt] funct |

BONUS SLIDES

You are responsible for the material contained
on the following slides, though we may not have
enough time to get to them in lecture.

They have been prepared in a way that should
be easily readable.

30

Agenda

|-Format
— Branching and PC-Relative Addressing

Administrivia

J-Format
Pseudo-instructions

Bonus: Assembly Practice
Bonus: Disassembly Practice

31

Assembly Practice

Assembly is the process of converting assembly
instructions into machine code

On the following slides, there are 6-lines of
assembly code, along with space for the machine
code

For each instruction,

1) Identify the instruction type (R/1/))

2) Break the space into the proper fields

3) Write field values in decimal

4) Convert fields to binary

5) Write out the machine code in hex

Use your Green Sheet; answers follow

Code Questions

Addr Instruction Material from past lectures:

800 Loop: sll S$tl1,%$s3,2 What type of C variable is
probably stored in $s67?

804 addu $tl,$tl, $s6

Write an equivalent C loop using
a—>Ss3, b>Ss5, c=>5s6. Define
variable types (assume they are
initialized somewhere) and feel

8l2 beq $t0,$s5, Exit free to introduce other variables
as you like.

808 1w $t0,0(Stl)

8lc addiu $s3,5s3,1

820 J Loop In English, what does this loop do?

Exit:

33

Code Answers

Addr Instruction Material from past lectures:

800 Loop: sll S$tl1,%$s3,2 What type of Cvariable is
probably stored in $s67?

int * (or any pointer)
804 addu $tl,$tl, $s6
Write an equivalent C loop using
a—>Ss3, b>Ss5, c=>5s6. Define
variable types (assume they are
initialized somewhere) and feel
812 beq St0,$s5, Exit free to introduce other variables

as you like.

int a,b,*c;

8lc addiu $s3,5s3,1 /* values initialized */

while(c[a] !=b) a++;

808 1w $t0,0(Stl)

820 J Loop In English, what does this loop do?

Finds an entry in array c that

Fxit . matches b.
Spring 2013 -- Lecture #9 34

Assembly Practice Question

Addr Instruction
??O Loopi sll Stl1,$s3,2
é?4 addul Stl,Stl, Ss6
508 1w st0,0(Stl)
512 beqg I $t0,$s5, Exit
é%6 addi% Ss3,5s3,1
.] Loop

820

Exit:

35

Assembly Practice Answer (1/4)

Addr

Instruction
800 TLoop: sll Stl,58s3,2

R:il opcode| rs | rt | rd | shamt| funct |
804 addu Stl,Stl, $s6

R:il opcode| rs | rt | rd | shamt| funct |
808 1w St0,0(stl)

'l opcode | rs | rt | immediate |
812 beg S$t0,$s5, Exit

'l opcode | rs | rt | immediate |
816 addiu $s3,Ss3,1

'l opcode | rs | rt | immediate |
820 7 Loop

J:| opcode |

target address

Exit:

Assembly Practice Answer (2/4)

Addr Instruction
800 TLoop: sll Stl,58s3,2

Rl o | o | 191 o | 2 1 o
804 addu Stl,Stl, $s6

Rl o | 9o [| 22| 9o | o | 33
808 1w $t0,0(St1)

Ll 35 | o9 | s | 0

812 beq $t0,$s5, Exit

Ll 4 | s | 21 | 2

816 addiu $s3,Ss3,1

Ll s | 19 | 19 | 1

820 7 Loop

IR 200

Exit:

37

Assembly Practice Answer (3/4)

Addr Instruction
800 TLoop: sll Stl,58s3,2
R:]1 000000 | 00000 10011] 01001] 00010] 000000 |
804 addu Stl,Stl, $s6
R:]1 000000 J 01001] 10110]) 01001 | 00000] 100001 |
808 1w $t0,0(Stl)
I:] 100011 | 01001] 01000] 0000 0000 0000 0000 |
812 beg $t0,$s5, Exit
I:] 000100 | 01000) 10101] 0000 0000 0000 0010 |
816 addiu $s3,5s3,1
I:] 001000 | 10011] 10011] 0000 0000 0000 0001 |
820 7 Loop
J:] 0ooo10 | 00 0000 0000 0000 0000 1100 1000 |

Exit:

38

Assembly Practice Answer (4/4)

Addr
800
R:
804
R:
808
|:
812
|:
816
|:
820

Instruction

Loop: sll $tl1,8s3,2
Ox 0013 4880

addu tl,stl, $s6
Ox 0136 4821

1w St0,0(sStl)

Ox 8D28 0000

beq $t0,$s5, Exit
Ox 1115 0002

addiu $s3,$s3,1

Ox 2273 0001

J Loop

Ox 0800 00CS8

Exit:

39

Agenda

|-Format
— Branching and PC-Relative Addressing

Administrivia

J-Format
Pseudo-instructions

Bonus: Assembly Practice
Bonus: Disassembly Practice

40

Disassembly Practice

Disassembly is the opposite process of figuring
out the instructions from the machine code

On the following slides, there are 6-lines of
machine code (hex numbers)
Your task:
1) Convert to binary
2) Use opcode to determine format and fields
3) Write field values in decimal
4) Convert fields MIPS instructions (try adding labels)
5) Translate into C (be creative!)

Use your Green Sheet; answers follow

41

Disassembly Practice Question

Address Instruction

0x00400000 0x00001025
0x0005402A
0x11000003
0x00441020
Ox20A5FFFF
0x08100001

Disassembly Practice Answer (1/9)

Address Instruction

0x00400000 00000000000000000001000000100101
00000000000001010100000000101010
00010001000000000000000000000011
00000000010001000001000000100000
00100000101001011111111111111111
00001000000100000000000000000001

1) Converted to binary

43

Disassembly Practice Answer (2/9)

Address Instruction

000400000 Rjoooooopooodoooodoooidoooochooiodl
R10000000000000103f01000000000R 01010
Ifooo1ooo100doooodoooo000000000011
Rjooooo0opoo1doo1odoooidoooodionoad
|
)

001000j00101lo0101h133311111121227]
000010[00000100000000000000000007]

2) Check opcode for format and fields...

— 0 (R-Format), 2 or 3 (J-Format), otherwise (I-Format)

44

Disassembly Practice Answer (3/9)

Address Instruction

000400000 Rl o | o | ol 2 | o | 37 |
R[o T o] s T s ol 4]
il 4 | s | o | +3 |
R[o T 2T 4T 21T o 321
[s [s [5] -1 |
T 0x0100001 |

3) Convert to decimal
— Can leave target address in hex

Disassembly Practice Answer (4/9)

Address Instruction
0x00400000 or $2,90,50
0x00400004 slt $8,%0,S5
0x00400008 beqg $8,50,3
0x0040000C add $2,%2,%4
0x00400010 addi $5,85,-1
0x00400014 7 0x0100001
0x00400018

4) Translate to MIPS instructions (write in addrs)

46

Disassembly Practice Answer (5/9)

Address Instruction
0x00400000 or $v0,$0,50
0x00400004 slt St0,$0,35al
0x00400008 beg $t0,$0,3
0x0040000C add $v0,8v0,sal
0x00400010 addi Sal, sal, -1

0x00400014 7 0x0100001 # addr: 0x0400004
0x00400018

4) Translate to MIPS instructions (write in addrs)
— More readable with register names

47

Disassembly Practice Answer (6/9)

Address

0x00400000
0x00400004
0x00400008
0x0040000C
0x00400010
0x00400014
0x00400018

Instruction
or
Loop: slt
beqg
add
addi
)
Exit:

sv0,$0,50
$t0,S$0, %al
$t0, 50,
sv0, s$v0, sa0
sal, sal, -1

4) Translate to MIPS instructions (write in addrs)
— Introduce labels

48

Disassembly Practice Answer (7/9)

Address Instruction
or sv0,$0,50
Loop: slt $t0,50, %al
beqg $tO0, $0,
add $vO0,$v0, $a0
addi $al, sal,-1

Exit:
4) Translate to MIPS instructions (write in addrs)
— What does it do?

49

Disassembly Practice Answer (8/9)

/* a=28v0, b=2%a0, c=2%al */
a=20;
while(c > 0) {

a += b;

c--;

5) Translate into C code
— |nitial direct translation

50

Disassembly Practice Answer (9/9)

/* naive multiplication: returns m*n */
int multiply(int m, int n) {

int p; /* product */

for(p = 0; n-- > 0; p += m) ;

return p;

5) Translate into C code
— One of many possible ways to write this

51

