
inst.eecs.berkeley.edu/~cs61c
UCB CS61C : Machine Structures

 Lecture 11 – Introduction to MIPS
 Procedures II & Logical Ops

 2014-02-14

Prof Paul Debevec (UC Berkeley PhD 1996) at
USC has been working to create virtual
humans to keep alive the memory AND
INTERACTIONS w/people into a 3D hologram.
He is recording the Holocaust survivors, who
tell their story, answering 500 questions about
themselves. They’re in a race against time…

Sr Lecturer SOE
Dan Garcia

www.washingtonpost.com/national/holograms-seen-as-tools-to-teach-
future-generations-about-holocaust-retell-survivors-stories/
2013/02/02/558cab32-6d58-11e2-8f4f-2abd96162ba8_story_1.html! CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (2) Garcia, Spring 2014 © UCB

Review
§  Functions called with jal, return with jr $ra.
§  The stack is your friend: Use it to save anything you

need. Just leave it the way you found it!
§  Instructions we know so far…

Arithmetic: add, addi, sub, addu, addiu, subu!
Memory: lw, sw, lb, sb

Decision: beq, bne, slt, slti, sltu, sltiu
Unconditional Branches (Jumps): j, jal, jr

§  Registers we know so far
ú  All of them!
ú  There are CONVENTIONS when calling procedures!

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (3) Garcia, Spring 2014 © UCB

The Stack (review)
§  Stack frame includes:
ú  Return “instruction” address
ú  Parameters
ú  Space for other local variables

§  Stack frames contiguous
blocks of memory; stack pointer tells
where bottom of stack frame is

§  When procedure ends, stack frame is
tossed off the stack; frees memory for
future stack frames frame"

frame"

frame"

frame"

$sp"

0xFFFFFFFF"

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (4) Garcia, Spring 2014 © UCB

Stack

§  Last In, First Out (LIFO) data structure

main ()!
{ a(0); !
}!

void a (int m)!
{ b(1); !
}!
void b (int n)!
{ c(2); !
}!
void c (int o)!
{ d(3); !
}!
void d (int p)!
{ !
}!

stack!

Stack Pointer!

Stack Pointer!

Stack Pointer!

Stack Pointer!

Stack Pointer!

Stack
grows
down"

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (5) Garcia, Spring 2014 © UCB

§  Pointers in C allow access to deallocated memory,
leading to hard-to-find bugs !
int *ptr () {  

!int y;  
!y = 3;  
!return &y; }  

main () {  
!int *stackAddr,content;  
!stackAddr = ptr();  
!content = *stackAddr;  
!printf("%d", content); /* 3 */  
!content = *stackAddr;  
!printf("%d", content); }/*13451514 */!

Who cares about stack management?

main"

ptr() 
(y==3)"

SP"

main"
SP"

main"

printf() 
(y==?)"

SP"

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (6) Garcia, Spring 2014 © UCB

Memory Management
§  How do we manage memory?
§  Code, Static storage are easy:

they never grow or shrink
§  Stack space is also easy:

stack frames are created and destroyed in
last-in, first-out (LIFO) order

§  Managing the heap is tricky:
memory can be allocated / deallocated at
any time

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (7) Garcia, Spring 2014 © UCB

Heap Management Requirements
§  Want malloc() and free() to run quickly.
§  Want minimal memory overhead
§  Want to avoid fragmentation* –

when most of our free memory is in many small
chunks
ú  In this case, we might have many free bytes but not

be able to satisfy a large request since the free bytes
are not contiguous in memory.

* This is technically called external fragmention"
CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (8) Garcia, Spring 2014 © UCB

Heap Management
§  An example

ú  Request R1 for 100 bytes
ú  Request R2 for 1 byte
ú  Memory from R1 is freed
ú  Request R3 for 50 bytes

R2 (1 byte)"

R1 (100 bytes)"

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (9) Garcia, Spring 2014 © UCB

Heap Management
§  An example

ú  Request R1 for 100 bytes
ú  Request R2 for 1 byte
ú  Memory from R1 is freed

   Memory has become
fragmented!

   We have to keep track of
the two freespace regions

ú  Request R3 for 50 bytes
   We have to search the

data structures holding
the freespace to find one
that will fit! Choice here...

R2 (1 byte)"

R3?"

R3?"

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (10) Garcia, Spring 2014 © UCB

Administrivia
§  Project update

ú  Quick Peer Instruction question: how are you doing
the project?
a)  [0, 20%) done
b)  [20, 40%) done
c)  [40, 60%) done
d)  [60, 80%) done
e)  [80, 100%] done

§  TAs, anything?

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (11) Garcia, Spring 2014 © UCB

§  CalleR: the calling function
§  CalleE: the function being called
§  When callee returns from executing, the caller

needs to know which registers may have
changed and which are guaranteed to be
unchanged.

§  Register Conventions: A set of generally
accepted rules as to which registers will be
unchanged after a procedure call (jal) and
which may be changed.

Register Conventions (1/4)

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (12) Garcia, Spring 2014 © UCB

§  $0: No Change. Always 0.
§  $s0-$s7: Restore if you change. Very important,

that’s why they’re called saved registers. If the
callee changes these in any way, it must restore
the original values before returning.

§  $sp: Restore if you change. The stack pointer
must point to the same place before and after
the jal call, or else the caller won’t be able to
restore values from the stack.

§  HINT -- All saved registers start with S!

Register Conventions (2/4) – saved

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (13) Garcia, Spring 2014 © UCB

§  $ra: Can Change. The jal call itself will
change this register. Caller needs to save on
stack if nested call.

§  $v0-$v1: Can Change. These will contain the
new returned values.

§  $a0-$a3: Can change. These are volatile
argument registers. Caller needs to save if they
are needed after the call.

§  $t0-$t9: Can change. That’s why they’re
called temporary: any procedure may change
them at any time. Caller needs to save if they’ll
need them afterwards.

Register Conventions (2/4) – volatile

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (14) Garcia, Spring 2014 © UCB

§  What do these conventions mean?
ú  If function R calls function E, then function R must

save any temporary registers that it may be using
onto the stack before making a jal call.

ú  Function E must save any S (saved) registers it
intends to use before garbling up their values, and
restore them after done garbling

§  Remember: caller/callee need to save only
temporary/saved registers they are using, not
all registers.

Register Conventions (4/4)

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (15) Garcia, Spring 2014 © UCB

r: ... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem  
 ... ### PUSH REGISTER(S) TO STACK?  
 jal e # Call e  
 ... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem  
 jr $ra # Return to caller of r  

e: ... # R/W $s0,$v0,$t0,$a0,$sp,$ra,mem  
 jr $ra # Return to r!

Peer Instruction

What does r have to push on the stack before “jal e”?

a) 1 of ($s0,$sp,$v0,$t0,$a0,$ra)  
b) 2 of ($s0,$sp,$v0,$t0,$a0,$ra)  
c) 3 of ($s0,$sp,$v0,$t0,$a0,$ra)  
d) 4 of ($s0,$sp,$v0,$t0,$a0,$ra)  
e) 5 of ($s0,$sp,$v0,$t0,$a0,$ra)!

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (17) Garcia, Spring 2014 © UCB

§  Register Conventions: Each register has a
purpose and limits to its usage. Learn these and
follow them, even if you’re writing all the code
yourself.

§  Logical and Shift Instructions
ú  Operate on bits individually, unlike arithmetic, which

operate on entire word.
ú  Use to isolate fields, either by masking or by shifting

back and forth.
ú  Use shift left logical, sll,for multiplication by powers

of 2
ú  Use shift right logical, srl,for division by powers of 2

of unsigned numbers (unsigned int)
ú  Use shift right arithmetic, sra,for division by powers

of 2 of signed numbers (int)
§  New Instructions:
and, andi, or, ori, sll, srl, sra!

“And in Conclusion…”

