
CS61C L15 Floating Point I (1)! Garcia, Spring 2014 © UCB!

! !Senior Lecturer SOE Dan Garcia!

! !www.cs.berkeley.edu/~ddgarcia!

inst.eecs.berkeley.edu/~cs61c  
CS61C : Machine Structures 

 Lecture 15  
Floating Point 

Koomey’s law ⇒  
Stanford Prof Jonathan Koomey  

looked at 6 decades of data  
(including pre-electronic) and found that energy

efficiency of computers doubles roughly every
18 months. This is even more relevant as

battery-powered devices become more popular. !
www.technologyreview.com/computing/38548/!

CS61C L15 Floating Point I (2)! Garcia, Spring 2014 © UCB!

Quote of the day!

“95% of the  
folks out there are  

completely clueless
about floating-point.”!

! !James Gosling  
!Sun Fellow 
!Java Inventor  
!1998-02-28!

CS61C L15 Floating Point I (3)! Garcia, Spring 2014 © UCB!

Review of Numbers!

• Computers are made to deal with
numbers!
• What can we represent in N bits?!

• 2N things, and no more! They could be…!
• Unsigned integers:!
! ! !0 !to !2N - 1!
(for N=32, 2N–1 = 4,294,967,295)!
• Signed Integers (Two’s Complement)!
! ! !-2(N-1)! !to ! 2(N-1) - 1!
(for N=32, 2(N-1) = 2,147,483,648)!

CS61C L15 Floating Point I (4)! Garcia, Spring 2014 © UCB!

What about other numbers?!
1.  Very large numbers? !(seconds/millennium) 

 ⇒ 31,556,926,00010 (3.155692610 x 1010)!

2.  Very small numbers? (Bohr radius) 
 ⇒ 0.000000000052917710m (5.2917710 x 10-11) !

3.  Numbers with both integer & fractional parts? 
 ⇒ 1.5 !

First consider #3. !

…our solution will also help with 1 and 2.!

CS61C L15 Floating Point I (5)! Garcia, Spring 2014 © UCB!

Representation of Fractions!
“Binary Point” like decimal point signifies
boundary between integer and fractional parts:!

xx.yyyy!
21! 20! 2-1! 2-2! 2-3! 2-4!

Example 6-bit
representation:!

10.10102 = 1x21 + 1x2-1 + 1x2-3 = 2.62510 !

If we assume “fixed binary point”, range of 6-bit
representations with this format: !

! ! !0 to 3.9375 (almost 4)!

CS61C L15 Floating Point I (6)! Garcia, Spring 2014 © UCB!

Fractional Powers of 2!

0 !1.0 !1!
1   0.5! !1/2!
2   0.25 !1/4!
3   0.125 !1/8!
4   0.0625 !1/16!
5   0.03125 !1/32!
6   0.015625!
7   0.0078125!
8   0.00390625!
9   0.001953125!
10   0.0009765625!
11   0.00048828125!
12   0.000244140625!
13   0.0001220703125!
14   0.00006103515625!
15   0.000030517578125!

i 2-i!Mark Lu’s “Binary Float Displayer”  
http://inst.eecs.berkeley.edu/~marklu/bfd/?n=1000"

CS61C L15 Floating Point I (7)! Garcia, Spring 2014 © UCB!

Representation of Fractions with Fixed Pt.!
What about addition and multiplication?!

Addition is
straightforward:!

 01.100 1.510!
+ 00.100 0.510!
 10.000 2.010!

Multiplication a bit more complex:!

 01.100 1.510!
 00.100 0.510 !
 00 000!
 000 00!
 0110 0!
 00000!
 00000!
0000110000!

Where’s the answer, 0.11? (need to remember where point is)!

CS61C L15 Floating Point I (8)! Garcia, Spring 2014 © UCB!

Representation of Fractions!
So far, in our examples we used a “fixed” binary point
what we really want is to “float” the binary point. Why?!

Floating binary point most effective use of our limited bits (and
thus more accuracy in our number representation):!

… 000000.001010100000…!

Any other solution would lose accuracy!!

example: put 0.1640625 into binary. Represent as in
5-bits choosing where to put the binary point.!

Store these bits and keep track of the binary
point 2 places to the left of the MSB!

With floating point rep., each numeral carries a exponent
field recording the whereabouts of its binary point. !

The binary point can be outside the stored bits, so very
large and small numbers can be represented.!

CS61C L15 Floating Point I (9)! Garcia, Spring 2014 © UCB!

Scientific Notation (in Decimal)!

6.0210 x 1023!

radix (base)!decimal point!

mantissa! exponent!

• Normalized form: no leadings 0s  
(exactly one digit to left of decimal point)!
• Alternatives to representing 1/1,000,000,000!

• Normalized: !1.0 x 10-9!
• Not normalized: !0.1 x 10-8,10.0 x 10-10 !

CS61C L15 Floating Point I (10)! Garcia, Spring 2014 © UCB!

Scientific Notation (in Binary)!

1.01two x 2-1!

radix (base)!“binary point”!

exponent!

• Computer arithmetic that supports it
called floating point, because it
represents numbers where the binary
point is not fixed, as it is for integers!

• Declare such variable in C as float!

mantissa!

CS61C L15 Floating Point I (11)! Garcia, Spring 2014 © UCB!

Floating Point Representation (1/2)!
• Normal format: +1.xxx…xtwo*2yyy…ytwo!
• Multiple of Word Size (32 bits)!

0!31!
S! Exponent!
30! 23!22!

Significand!
1 bit! 8 bits! 23 bits!
• S represents Sign ! ! !

!Exponent represents y’s !!
!Significand represents x’s!

• Represent numbers as small as  
2.0 x 10-38 to as large as 2.0 x 1038 !

CS61C L15 Floating Point I (12)! Garcia, Spring 2014 © UCB!

Floating Point Representation (2/2)!
• What if result too large? !

(> 2.0x1038 , < -2.0x1038)!
• Overflow! ⇒ Exponent larger than represented in 8-

bit Exponent field!

• What if result too small? !
(>0 & < 2.0x10-38 , <0 & > -2.0x10-38)!
• Underflow! ⇒ Negative exponent larger than

represented in 8-bit Exponent field!

• What would help reduce chances of overflow
and/or underflow?!

0! 2x10-38! 2x1038!1!-1! -2x10-38!-2x1038!

underflow! overflow!overflow!

CS61C L15 Floating Point I (13)! Garcia, Spring 2014 © UCB!

IEEE 754 Floating Point Standard (1/3)!
Single Precision (DP similar):!

•  Sign bit:! !1 means negative ! !
! ! !0 means positive!

• Significand:!
• To pack more bits, leading 1 implicit for

normalized numbers!
• 1 + 23 bits single, 1 + 52 bits double!
• always true: 0 < Significand < 1

(for normalized numbers)!
• Note: 0 has no leading 1, so reserve exponent

value 0 just for number 0!

0!31!
S! Exponent!
30! 23!22!

Significand!
1 bit! 8 bits! 23 bits!

CS61C L15 Floating Point I (14)! Garcia, Spring 2014 © UCB!

IEEE 754 Floating Point Standard (2/3)!

• IEEE 754 uses “biased exponent”
representation. !
• Designers wanted FP numbers to be used
even if no FP hardware; e.g., sort records with
FP numbers using integer compares!

• Wanted bigger (integer) exponent field to
represent bigger numbers. !

• 2’s complement poses a problem (because
negative numbers look bigger)!

• We’re going to see that the numbers are
ordered EXACTLY as in sign-magnitude!

§  I.e., counting from binary odometer 00…00 up to
11…11 goes from 0 to +MAX to -0 to -MAX to 0!

CS61C L15 Floating Point I (15)! Garcia, Spring 2014 © UCB!

IEEE 754 Floating Point Standard (3/3)!
• Called Biased Notation, where bias is
number subtracted to get real number!
• IEEE 754 uses bias of 127 for single prec.!
• Subtract 127 from Exponent field to get
actual value for exponent!

• 1023 is bias for double precision!
• Summary (single precision):!

0!31!
S! Exponent!
30! 23!22!

Significand!
1 bit! 8 bits! 23 bits!
• (-1)S x (1 + Significand) x 2(Exponent-127)!

• Double precision identical, except with
exponent bias of 1023 (half, quad similar)!

CS61C L15 Floating Point I (16)! Garcia, Spring 2014 © UCB!

“Father” of the Floating point standard!

IEEE Standard 754
for Binary Floating-

Point Arithmetic."

www.cs.berkeley.edu/~wkahan/ieee754status/754story.html!

Prof. Kahan"
1989���

ACM Turing���
Award Winner!"

CS61C L15 Floating Point I (17)! Garcia, Spring 2014 © UCB!

Representation for ± ∞!

• In FP, divide by 0 should produce ± ∞,
not overflow.!
• Why?!

• OK to do further computations with ∞
E.g., X/0 > Y may be a valid comparison!

• Ask math majors!

• IEEE 754 represents ± ∞!
• Most positive exponent reserved for ∞!
• Significands all zeroes!

CS61C L15 Floating Point I (18)! Garcia, Spring 2014 © UCB!

Representation for 0!
• Represent 0?!

• exponent all zeroes!
• significand all zeroes!
• What about sign? Both cases valid.!
+0: 0 00000000 00000000000000000000000!

-0: 1 00000000 00000000000000000000000!

CS61C L15 Floating Point I (19)! Garcia, Spring 2014 © UCB!

Special Numbers!
• What have we defined so far? !

!(Single Precision)!
Exponent !Significand !Object!
0 ! ! !0 ! ! !0!
0 ! ! !nonzero ! !???!
1-254 ! !anything ! !+/- fl. pt. #!
255 ! !0 ! ! !+/- ∞!
255 ! !nonzero ! !???!

• Professor Kahan had clever ideas;  
“Waste not, want not”!

• Wanted to use Exp=0,255 & Sig!=0!
CS61C L15 Floating Point I (20)! Garcia, Spring 2014 © UCB!

Representation for Not a Number!

• What do I get if I calculate ! !
!sqrt(-4.0)or 0/0?!

• If ∞ not an error, these shouldn’t be either!
• Called Not a Number (NaN)!
• Exponent = 255, Significand nonzero!

• Why is this useful?!
• Hope NaNs help with debugging?!
• They contaminate: op(NaN, X) = NaN!
• Can use the significand to identify which!!

CS61C L15 Floating Point I (21)! Garcia, Spring 2014 © UCB!

Representation for Denorms (1/2)!
• Problem: There’s a gap among
representable FP numbers around 0!

• Smallest representable pos num:!
a = 1.0… 2 * 2-126 = 2-126!

• Second smallest representable pos num:!
b != 1.000……1 2 * 2-126  

= (1 + 0.00…12) * 2-126  
= (1 + 2-23) * 2-126  
= 2-126 + 2-149!

!a - 0 = 2-126!

!b - a = 2-149!

b!
a!0! +!-!

Gaps!!

Normalization
and implicit 1  
is to blame!!

CS61C L15 Floating Point I (22)! Garcia, Spring 2014 © UCB!

Representation for Denorms (2/2)!

• Solution:!
• We still haven’t used Exponent = 0,
Significand nonzero!

• DEnormalized number: no (implied)
leading 1, implicit exponent = -126.!

• Smallest representable pos num:!
a = 2-149 !

• Second smallest representable pos num:!
b = 2-148!

0! +!-!

CS61C L15 Floating Point I (23)! Garcia, Spring 2014 © UCB!

Special Numbers Summary!

• Reserve exponents, significands:!
Exponent !Significand !Object!
0 ! ! !0 ! ! !0!
0 ! ! !nonzero ! !Denorm!
1-254 ! !anything ! !+/- fl. pt. #!
255 ! !0 ! ! !+/- ∞!
255 ! !nonzero ! !NaN!

CS61C L15 Floating Point I (24)! Garcia, Spring 2014 © UCB!

Conclusion!
• Floating Point lets us:!

•  Represent numbers containing both integer and fractional
parts; makes efficient use of available bits.!

•  Store approximate values for very large and very small #s.!

•  IEEE 754 Floating Point Standard is most widely
accepted attempt to standardize interpretation of such
numbers (Every desktop or server computer sold
since ~1997 follows these conventions)!
• Summary (single precision):!

0!31!
S! Exponent!
30! 23!22!

Significand!
1 bit! 8 bits! 23 bits!
• (-1)S x (1 + Significand) x 2(Exponent-127)!

• Double precision identical, except with
exponent bias of 1023 (half, quad similar)!

Exponent tells Significand how much
(2i) to count by (…, 1/4, 1/2, 1, 2, …)!

Can
store
NaN,
± ∞!

www.h-schmidt.net/FloatApplet/IEEE754.html!

CS61C L15 Floating Point I (25)! Garcia, Spring 2014 © UCB!

Bonus slides!

• These are extra slides that used to be
included in lecture notes, but have
been moved to this, the “bonus” area
to serve as a supplement.!
• The slides will appear in the order they
would have in the normal presentation!

CS61C L15 Floating Point I (26)! Garcia, Spring 2014 © UCB!

Example: Converting Binary FP to Decimal!

• Sign: 0 è positive!
• Exponent: !

• 0110 1000two = 104ten!
• Bias adjustment: 104 - 127 = -23!

• Significand:!
1 + 1x2-1+ 0x2-2 + 1x2-3 + 0x2-4 + 1x2-5 +... 
=1+2-1+2-3 +2-5 +2-7 +2-9 +2-14 +2-15 +2-17 +2-22  
= 1.0 + 0.666115!

0! 0110 1000! 101 0101 0100 0011 0100 0010!

• Represents: 1.666115ten*2-23 ~ 1.986*10-7

!! !(about 2/10,000,000)!
CS61C L15 Floating Point I (27)! Garcia, Spring 2014 © UCB!

Example: Converting Decimal to FP!

1.  Denormalize: -23.40625!
2.  Convert integer part:!

23 = 16 + (7 = 4 + (3 = 2 + (1))) = 101112!

3.  Convert fractional part:!
.40625 = .25 + (.15625 = .125 + (.03125)) = .011012!

4.  Put parts together and normalize:!
10111.01101 = 1.011101101 x 24!

5.  Convert exponent: 127 + 4 = 100000112!

1! 1000 0011! 011 1011 0100 0000 0000 0000!

-2.340625 x 101!

CS61C L15 Floating Point I (28)! Garcia, Spring 2014 © UCB!

Administrivia…Midterm coming up soon!!

• How should we study for the midterm?!
• Form study groups…don’t prepare in isolation!!
• Attend the review session!
• Look over HW, Labs, Projects, class notes!!
• Go over old exams – HKN office has put them online

(link from 61C home page)!
• Attend TA office hours and work out hard probs!

CS61C L15 Floating Point I (29)! Garcia, Spring 2014 © UCB!

Double Precision Fl. Pt. Representation!
• Next Multiple of Word Size (64 bits)!

• Double Precision (vs. Single Precision)!
• C variable declared as double!
• Represent numbers almost as small as  
2.0 x 10-308 to almost as large as 2.0 x 10308 !

• But primary advantage is greater accuracy  
due to larger significand!

0!31!
S! Exponent!

30! 20!19!
Significand!

1 bit! 11 bits! 20 bits!
Significand (cont’d)!

32 bits!

CS61C L15 Floating Point I (30)! Garcia, Spring 2014 © UCB!

QUAD Precision Fl. Pt. Representation!
• Next Multiple of Word Size (128 bits)!

• Unbelievable range of numbers!
• Unbelievable precision (accuracy)!

• IEEE 754-2008 “binary128” standard!
• Has 15 exponent bits and 112 significand
bits (113 precision bits)!

• Oct-Precision? !
• Some have tried, no real traction so far!

• Half-Precision? !
• Yep, “binary16”: 1/5/10!
en.wikipedia.org/wiki/Floating_point!

CS61C L15 Floating Point I (31)! Garcia, Spring 2014 © UCB!

Understanding the Significand (1/2)!

• Method 1 (Fractions):!
• In decimal: 0.34010 !⇒ 34010/100010
! ! ! ! ! !⇒ 3410/10010!

• In binary: 0.1102 !⇒ 1102/10002 = 610/810 !
!! ! ! ⇒ 112/1002 = 310/410!

• Advantage: less purely numerical, more
thought oriented; this method usually
helps people understand the meaning of
the significand better!

CS61C L15 Floating Point I (32)! Garcia, Spring 2014 © UCB!

Understanding the Significand (2/2)!

• Method 2 (Place Values):!
• Convert from scientific notation!
• In decimal: !1.6732 = (1x100) + (6x10-1) +
(7x10-2) + (3x10-3) + (2x10-4)!

• In binary: !1.1001 = (1x20) + (1x2-1) +
(0x2-2) + (0x2-3) + (1x2-4)!

• Interpretation of value in each position
extends beyond the decimal/binary point!

• Advantage: good for quickly calculating
significand value; use this method for
translating FP numbers!

CS61C L15 Floating Point I (33)! Garcia, Spring 2014 © UCB!

Precision and Accuracy!

Precision is a count of the number bits in a
computer word used to represent a value.!

Accuracy is a measure of the difference
between the actual value of a number and
its computer representation.!

Don’t confuse these two terms!!

High precision permits high accuracy but doesn’t !
guarantee it. It is possible to have high precision!
but low accuracy. !
Example: !float pi = 3.14;!

!pi will be represented using all 24 bits of the !
!significant (highly precise), but is only an !
!approximation (not accurate). "

CS61C L15 Floating Point I (34)! Garcia, Spring 2014 © UCB!

Rounding!

• When we perform math on real
numbers, we have to worry about
rounding to fit the result in the
significant field.!
• The FP hardware carries two extra bits
of precision, and then round to get the
proper value!
• Rounding also occurs when converting:!

 double to a single precision value, or!
 floating point number to an integer!

CS61C L15 Floating Point I (35)! Garcia, Spring 2014 © UCB!

IEEE FP Rounding Modes!

• Round towards + ∞!
•  ALWAYS round “up”: 2.001 → 3, -2.001 → -2!

• Round towards - ∞!
•  ALWAYS round “down”: 1.999 → 1, -1.999 → -2!

• Truncate!
•  Just drop the last bits (round towards 0)!

• Unbiased (default mode). Midway? Round to even!
•  Normal rounding, almost: 2.4 → 2, 2.6 → 3, 2.5 → 2, 3.5 → 4!
•  Round like you learned in grade school (nearest int)!
•  Except if the value is right on the borderline, in which case

we round to the nearest EVEN number!
•  Ensures fairness on calculation!
•  This way, half the time we round up on tie, the other half time

we round down. Tends to balance out inaccuracies!

Examples in decimal (but, of course, IEEE754 in binary)!

CS61C L15 Floating Point I (36)! Garcia, Spring 2014 © UCB!

FP Addition!

• More difficult than with integers!
• Can’t just add significands!
• How do we do it?!

• De-normalize to match exponents!
• Add significands to get resulting one!
• Keep the same exponent!
• Normalize (possibly changing exponent)!

• Note: If signs differ, just perform a
subtract instead.!

CS61C L15 Floating Point I (37)! Garcia, Spring 2014 © UCB!

MIPS Floating Point Architecture (1/4)!
• MIPS has special instructions for
floating point operations:!

• Single Precision:! ! ! ! !
! !add.s, sub.s, mul.s, div.s!

• Double Precision: ! ! ! !
! !add.d, sub.d, mul.d, div.d!

• These instructions are far more
complicated than their integer
counterparts. They require special
hardware and usually they can take
much longer to compute.!

CS61C L15 Floating Point I (38)! Garcia, Spring 2014 © UCB!

MIPS Floating Point Architecture (2/4)!

• Problems:!
• It’s inefficient to have different
instructions take vastly differing
amounts of time.!

• Generally, a particular piece of data will
not change from FP to int, or vice versa,
within a program. So only one type of
instruction will be used on it.!

• Some programs do no floating point
calculations!

• It takes lots of hardware relative to
integers to do Floating Point fast!

CS61C L15 Floating Point I (39)! Garcia, Spring 2014 © UCB!

MIPS Floating Point Architecture (3/4)!

• 1990 Solution: Make a completely
separate chip that handles only FP.!
• Coprocessor 1: FP chip!

• contains 32 32-bit registers: $f0, $f1, …!
• most registers specified in .s and .d
instruction refer to this set!

• separate load and store: lwc1 and swc1  
(“load word coprocessor 1”, “store …”)!

• Double Precision: by convention, even/
odd pair contain one DP FP number:
$f0/$f1, $f2/$f3, … , $f30/$f31!

CS61C L15 Floating Point I (40)! Garcia, Spring 2014 © UCB!

MIPS Floating Point Architecture (4/4)!
• 1990 Computer actually contains
multiple separate chips:!

• Processor: handles all the normal stuff!
• Coprocessor 1: handles FP and only FP; !
• more coprocessors?… Yes, later!
• Today, cheap chips may leave out FP HW!

• Instructions to move data between
main processor and coprocessors:!
• mfc0, mtc0, mfc1, mtc1, etc.!

• Appendix pages A-70 to A-74 contain
many, many more FP operations.!

CS61C L15 Floating Point I (41)! Garcia, Spring 2014 © UCB!

Example: Representing 1/3 in MIPS!
• 1/3 !

= 0.33333…10!

= 0.25 + 0.0625 + 0.015625 + 0.00390625 + … !
= 1/4 + 1/16 + 1/64 + 1/256 + …!
= 2-2 + 2-4 + 2-6 + 2-8 + …!
= 0.0101010101… 2 * 20!

= 1.0101010101… 2 * 2-2!

• Sign: 0!
• Exponent = -2 + 127 = 125 = 01111101!
• Significand = 0101010101…!

0! 0111 1101! 0101 0101 0101 0101 0101 010!
CS61C L15 Floating Point I (42)! Garcia, Spring 2014 © UCB!

Casting floats to ints and vice versa!

(int) floating_point_expression!
Coerces and converts it to the nearest
integer (C uses truncation)!
i = (int) (3.14159 * f);!

(float) integer_expression!
converts integer to nearest floating point!
f = f + (float) i;!

CS61C L15 Floating Point I (43)! Garcia, Spring 2014 © UCB!

int → float → int!

• Will not always print “true”!
• Most large values of integers don’t
have exact floating point
representations!!
• What about double?!

if (i == (int)((float) i)) {!

 printf(“true”);!

}!

CS61C L15 Floating Point I (44)! Garcia, Spring 2014 © UCB!

float → int → float!

• Will not always print “true”!
• Small floating point numbers (<1)
don’t have integer representations!
• For other numbers, rounding errors!

if (f == (float)((int) f)) {!

 printf(“true”);!

}!

CS61C L15 Floating Point I (45)! Garcia, Spring 2014 © UCB!

Floating Point Fallacy!
• FP add associative: FALSE!!

• x = – 1.5 x 1038, y = 1.5 x 1038, and z = 1.0!
• x + (y + z) != –1.5x1038 + (1.5x1038 + 1.0)
! ! != –1.5x1038 + (1.5x1038) = 0.0!

• (x + y) + z != (–1.5x1038 + 1.5x1038) + 1.0
! ! != (0.0) + 1.0 = 1.0!

• Therefore, Floating Point add is not
associative!!

• Why? FP result approximates real result!!
• This example: 1.5 x 1038 is so much larger
than 1.0 that 1.5 x 1038 + 1.0 in floating point
representation is still 1.5 x 1038!

CS61C L15 Floating Point I (46)! Garcia, Spring 2014 © UCB!

Peer Instruction!

What is the decimal equivalent
of the floating pt # above?!

1! 1000 0001! 111 0000 0000 0000 0000 0000!
!a) -7 * 2^129  
b) -3.5  
c) -3.75  
d) -7  
e) -7.5!

CS61C L15 Floating Point I (48)! Garcia, Spring 2014 © UCB!

Peer Instruction!

1.  Converting float -> int -> float
produces same float number!

2.  Converting int -> float -> int produces
same int number!

3.  FP add is associative: 
(x+y)+z = x+(y+z)!

 ABC!
1: FFF!
2: FFT !
3: FTF!
4: FTT!
5: TFF!
6: TFT!
7: TTF!
8: TTT!

CS61C L15 Floating Point I (50)! Garcia, Spring 2014 © UCB!

Peer Instruction!

•  Let f(1,2) = # of floats between 1 and 2!
•  Let f(2,3) = # of floats between 2 and 3!

1: f(1,2) < f(2,3)!
2: f(1,2) = f(2,3)!
3: f(1,2) > f(2,3)!

