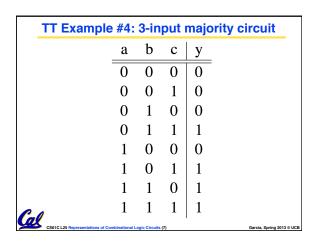
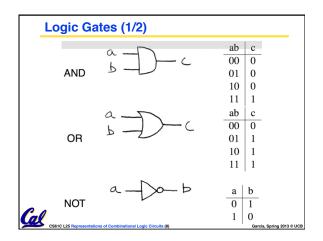
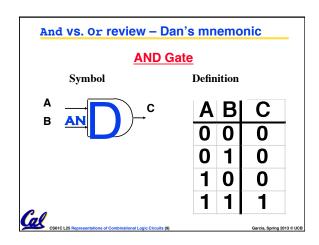
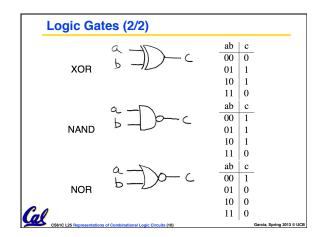


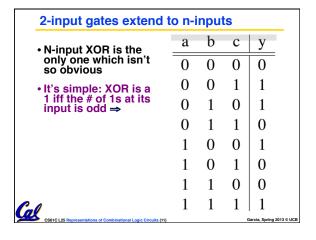
	TT Example #3: 32-bit unsigned adder		
	A	В	C
-	000 0	000 0	000 00
	000 0	000 1	000 01
	•	•	· How
	•	•	. Many Rows?
	111 1	111 1	· 111 10
G	CS61C L25 Representations of Com		Garcia, Spring 2013 © UCB

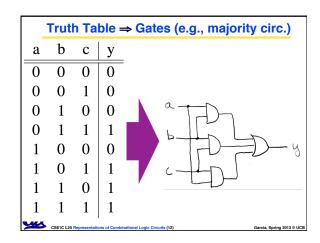


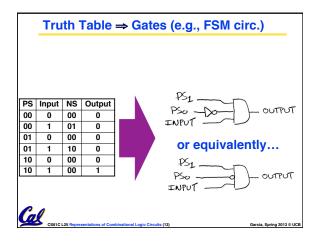






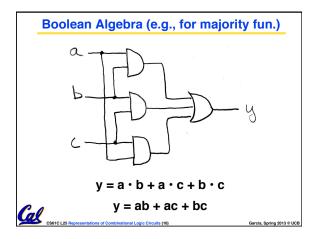


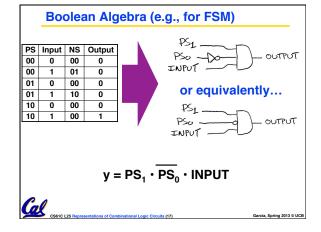


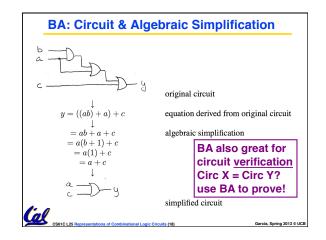


Boolean Algebra

- George Boole, 19th Century mathematician
- Developed a mathematical system (algebra) involving logic
 - · later known as "Boolean Algebra"
- Primitive functions: AND, OR and NOT
- The power of BA is there's a one-to-one correspondence between circuits made up of AND, OR and NOT gates and equations in BA







$x\cdot \overline{x}=0$ complementarity $x \cdot 0 = 0$ x + 1 = 1laws of 0's and 1's $x \cdot 1 = x$ x + 0 = xidentities idempotent law x + x = xcommutativityx+y=y+x(xy)z = x(yz) (x + y) + z = x + (y + z)associativity

Laws of Boolean Algebra

$$(xy)z = xy(yz) \qquad (x+y) + z = x + (y+z) \qquad \text{associativity}$$

$$x(y+z) = xy + xz \qquad x + yz = (x+y)(x+z) \qquad \text{distribution}$$

$$xy + x = x \qquad (x+y)x = x \qquad \text{uniting theorem}$$

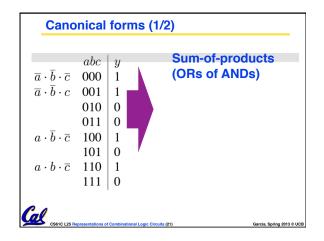
$$\overline{xy} + x = x + y \qquad (\overline{x} + y)x = xy \qquad \text{uniting theorem v.2}$$

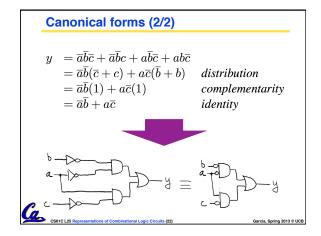
$$\overline{x \cdot y} = \overline{x} + \overline{y} \qquad \overline{x+y} = \overline{x} \cdot \overline{y} \qquad \text{DeMorgan's Law}$$

Boolean Algebraic Simplification Example

$$y = ab + a + c$$

= $a(b+1) + c$ distribution, identity
= $a(1) + c$ law of 1's
= $a + c$ identity





Peer Instruction

- 1) $(a+b) \cdot (\overline{a}+b) = b$
- 2) N-input gates can be thought of cascaded 2-input gates. i.e., (a Δ bc Δ d Δ e) = a Δ (bc Δ (d Δ e)) where Δ is one of AND, OR, XOR, NAND
- 3) You can use NOR(s) with clever wiring to simulate AND, OR, & NOT
- a: FFF a: FFT b: FTF b: FTT
- C: TFF d: TFT d: TTF e: TTT

- "And In conclusion..."
- Pipeline big-delay CL for faster clock
- Finite State Machines extremely useful
 You'll see them again in 150, 152 & 164
- Use this table and techniques we learned to transform from 1 to another

