inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures

Lecture 25 – Representations of Combinational Logic Circuits

Senior Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

Android Brain on Robots! ⇒

"Half the weight of some robots is

due to on-board computers and the batteries needed to power them. This lightweight robot uses an Android phone as the brain, with the phone's gyroscope and camera as sensors, with cloud help!"

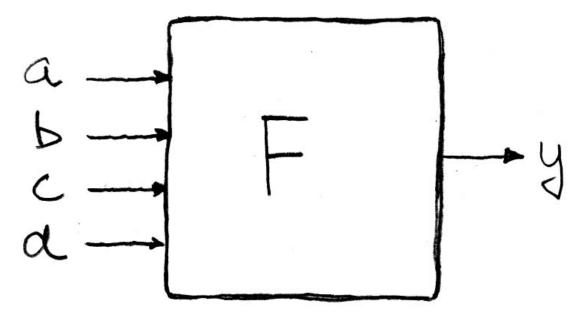
Romotive.com

www.technologyreview.com/business/38953/page1/

Review

- State elements are used to:
 - Build memories
 - Control the flow of information between other state elements and combinational logic
- D-flip-flops used to build registers
- Clocks tell us when D-flip-flops change
 - Setup and Hold times important
- We pipeline long-delay CL for faster clock
- Finite State Machines extremely useful
 - Represent states and transitions

Truth Tables



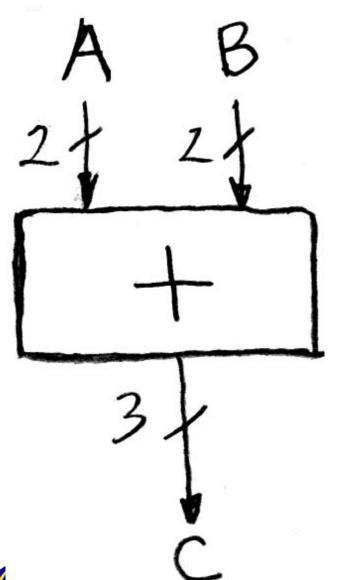
How many Fs (4-input devices) @ Radio Shack?

a	b	c	d	у
0	0	0	0	F(0,0,0,0)
0	0	0	1	F(0,0,0,1)
0	0	1	0	F(0,0,1,0)
0	0	1	1	F(0,0,1,1)
0	1	0	0	F(0,1,0,0)
0	1	0	1	F(0,1,0,1)
0	1	1	0	F(0,1,1,0)
0	1	1	1	F(0,1,1,1)
1	0	0	0	F(1,0,0,0)
1	0	0	1	F(1,0,0,1)
1	0	1	0	F(1,0,1,0)
1	0	1	1	F(1,0,1,1)
1	1	0	0	F(1,1,0,0)
1	1	0	1	F(1,1,0,1)
1	1	1	0	F(1,1,1,0)
1	1	1	1	F(1,1,1,1)

TT Example #1: 1 iff one (not both) a,b=1

a	b	y
0	0	0
0	1	1
1	0	1
1	1	0

TT Example #2: 2-bit adder



Α	В	C
a_1a_0	b_1b_0	$c_2c_1c_0$
00	00	000
00	01	001
00	10	010
00	11	011
01	00	001
01	01	010
01	10	011
01	11	100
10	00	010
10	01	011
10	10	100
10	11	101
11	00	011
11	01	100
11	10	101
11	11	110

How Many Rows?

TT Example #3: 32-bit unsigned adder

A	В	C
000 0	000 0	000 00
000 0	000 1	000 01
•	•	• How
•	•	. Many Rows?
•	•	•
111 1	111 1	111 10

TT Example #4: 3-input majority circuit

a	b	c	y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Logic Gates (1/2)

AND	a	ab 00 01 10	0 0 0
OR	a	11 ab 00 01 10 11	1 c 0 1 1
NOT	a Dob	a 0 1	b 1 0

And vs. Or review - Dan's mnemonic

AND Gate

Symbol

A AN C

Definition

A	B	C
0	0	0
0	1	0
1	0	0
1	1	1

Logic Gates (2/2)

	$a \rightarrow r$	ab	c
	·))	00	0
XOR	D -IL	01	1
		10	1
		11	0
	$a - \Gamma$	ab	c
	L D-C	00	1
NAND		01	1
		10	1
		11	0
	0 -	ab	c
	P - Do- c	00	1
NOR		01	0
		10	0
		11	0

2-input gates extend to n-inputs

- N-input XOR is the only one which isn't so obvious
- It's simple: XOR is a
 1 iff the # of 1s at its
 input is odd ⇒

a	b	c	y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Truth Table ⇒ **Gates** (e.g., majority circ.)

a	b	c	y	_
0	0	0	0	•
0	0	1	0	
0	1	0	0	a To
0	1	1	1	
1	0	0	0	y y
1	0	1	1	
1	1	0	1	
1	1	1	1	

Truth Table ⇒ **Gates** (e.g., **FSM** circ.)

PS	Input	NS	Output	151
00	0	00	0	PSO DO OUTPUT
00	1	01	0	INPUT -
01	0	00	0	
01	1	10	0	or equivalently
10	0	00	0	PS ₁
10	1	00	1	PSO OUTPUT
				INPUT -

Administrivia

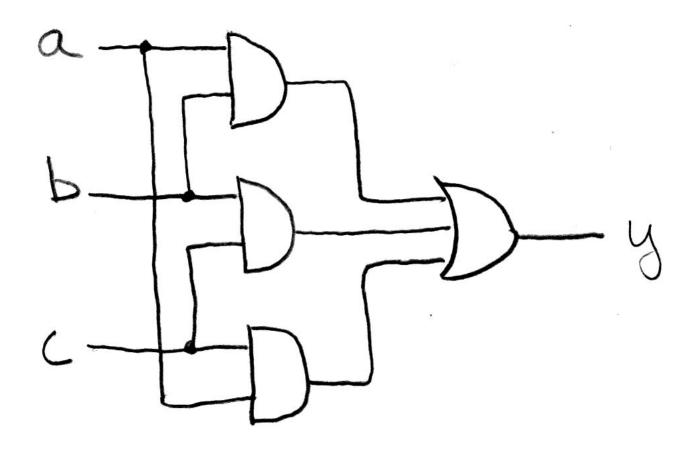
- How many hours on project 2 so far?
 - a) 0-10
 - b) 10-20
 - c) 30-40
 - d) 50-60
 - e) 60-70

Boolean Algebra

- George Boole, 19th Century mathematician
- Developed a mathematical system (algebra) involving logic
 - later known as "Boolean Algebra"
- Primitive functions: AND, OR and NOT
- The power of BA is there's a one-to-one correspondence between circuits made up of AND, OR and NOT gates and equations in BA

+ means OR, • means AND, x̄ means NOT

Boolean Algebra (e.g., for majority fun.)



$$y = a \cdot b + a \cdot c + b \cdot c$$

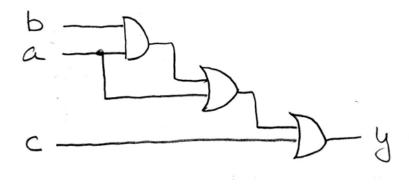
 $y = ab + ac + bc$

Boolean Algebra (e.g., for FSM)

				151
PS	Input	NS	Output	DC A SUFFRIGT
00	0	00	0	INPUT OUTPUT
00	1	01	0	INPUT -
01	0	00	0	
01	1	10	0	or equivalently
10	0	00	0	PS ₁
10	1	00	1	PSO OUTPUT
				INPUT - OUTTOI

$$y = PS_1 \cdot PS_0 \cdot INPUT$$

BA: Circuit & Algebraic Simplification



$$y = ((ab) + a) + c$$

$$= ab + a + c$$

$$= a(b+1) + c$$

$$= a(1) + c$$

$$= a + c$$

$$\downarrow$$

original circuit

equation derived from original circuit

algebraic simplification

BA also great for circuit <u>verification</u>
Circ X = Circ Y?
use BA to prove!

simplified circuit

Laws of Boolean Algebra

$$x \cdot \overline{x} = 0$$

$$x \cdot \overline{x} = 1$$

$$x \cdot 0 = 0$$

$$x + 1 = 1$$

$$x \cdot 1 = x$$

$$x \cdot x = x$$

$$x \cdot y = y \cdot x$$

$$(xy)z = x(yz)$$

$$x(y + z) = xy + xz$$

$$x + y = y + x$$

$$(x + y) + z = x + (y + z)$$

$$x(y + z) = xy + xz$$

$$x + yz = (x + y)(x + z)$$

$$xy + x = x$$

$$x + yz = (x + y)(x + z)$$

$$(x + y)x = x$$

$$(x + y)x = x$$

$$\overline{x}y + x = x + y$$

$$\overline{x}y + y = \overline{x}y + \overline{y}$$

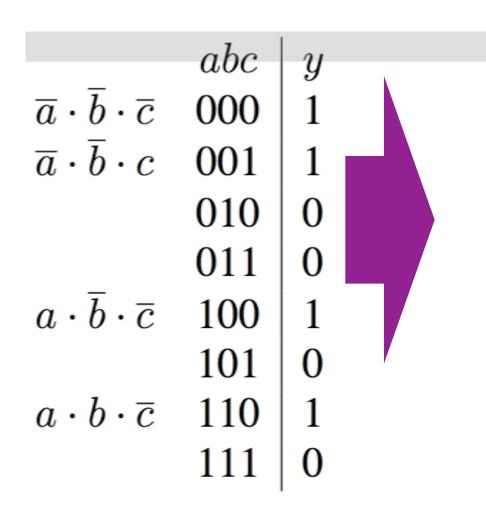
complementarity
laws of 0's and 1's
identities
idempotent law
commutativity
associativity
distribution
uniting theorem
uniting theorem v.2
DeMorgan's Law

Boolean Algebraic Simplification Example

$$y = ab + a + c$$

 $= a(b+1) + c$ distribution, identity
 $= a(1) + c$ law of 1's
 $= a + c$ identity

Canonical forms (1/2)



Sum-of-products (ORs of ANDs)

Canonical forms (2/2)

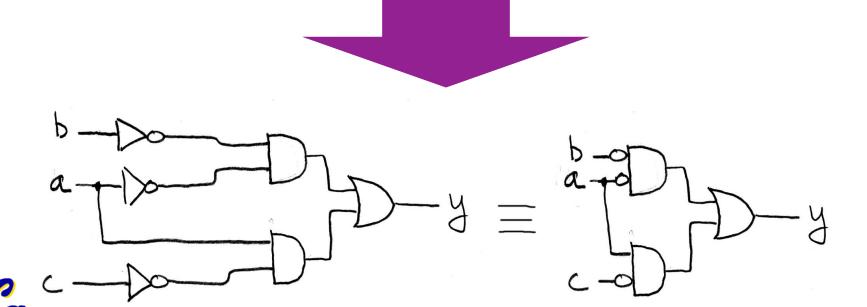
$$y = \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}c + a\overline{b}\overline{c} + ab\overline{c}$$

$$= \overline{a}\overline{b}(\overline{c} + c) + a\overline{c}(\overline{b} + b)$$

$$= \overline{a}\overline{b}(1) + a\overline{c}(1)$$

$$= \overline{a}\overline{b} + a\overline{c}$$

distribution complementarity identity



Peer Instruction

- 1) $(a+b) \cdot (\overline{a}+b) = b$
- 2) N-input gates can be thought of cascaded 2-input gates. I.e., (a Δ bc Δ d Δ e) = a Δ (bc Δ (d Δ e)) where Δ is one of AND, OR, XOR, NAND
- 3) You can use NOR(s) with clever wiring to simulate AND, OR, & NOT

a: FFF
a: FFT
b: FTF
b: FTT
c: TFF
d: TFT
d: TTF

Garcia, Spring 2013 © UCB

C501C L25 Representations of Combinational Logic Circuits (23

Peer Instruction Answer

- 1) $(a+b) \cdot (\overline{a+b}) = a\overline{a+ab+ba+ba+bb} = 0+b(a+\overline{a})+b = b+b = b$
- 2) (next slide)
- 3) You can use NOR(s) with clever wiring to simulate AND, OR, & NOT.

$$NOR(a,a) = \overline{a+a} = \overline{aa} = \overline{a}$$

Using this NOT, can we make a NOR an OR? An And?

TRUE

- 1) $(a+b) \cdot (\overline{a}+b) = b$
- 2) N-input gates can be thought of cascaded 2-input gates. I.e., (a Δ bc Δ d Δ e) = a Δ (bc Δ (d Δ e)) where Δ is one of AND, OR, XOR, NAND
- 3) You can use NOR(s) with clever wiring to simulate AND, OR, & NOT

123
a: FFF
a: FFT
b: FTF
b: FTT
c: TFF
d: TFT
d: TTF

CS61C L25 Representations of Combinational Logic Circuits (24)

Garcia, Spring 2013 © UCB

Peer Instruction Answer (B)

2) N-input gates can be thought of cascaded 2-input gates. I.e., (a Δ bc Δ d Δ e) = a Δ (bc Δ (d Δ e)) where Δ is one of AND, OR, XOR, NAND...FALSE

Let's confirm!

CORRECT 3-input						
XYZ	AND	OR	XOR	NAND		
000	0	0	0	1		
001	0	1	1	1		
010	0	1	1	1		
011	0	1	0	1		
100	0	1	1	1		
101	0	1	0	1		
110	0	1	0	1		
111	1	1	1	0		

CORRECT 2-input							
YZ	AND	OR	XOR	NAND			
00	0	0	0	1			
01	0	1	1	1			
10	0	1	1	1			
11	1	1	0	0			

"And In conclusion..."

- Pipeline big-delay CL for faster clock
- Finite State Machines extremely useful
 - You'll see them again in 150, 152 & 164
- Use this table and techniques we learned to transform from 1 to another

