
4/9/2014

1

CS 61C: Great Ideas in Computer
Architecture (Machine Structures)
Lecture 30: Pipeline Parallelism 1

Lecturer:
Alan Christopher

Boolean Exprs for Controller

2014-04-11 Spring 2014 -- Lecture #31 7

rtype = ~op5 • ~op4 • ~op3 • ~op2 • ~op1 • ~op0,
ori = ~op5 • ~op4 • op3 • op2 • ~op1 • op0
lw = op5 • ~op4 • ~op3 • ~op2 • op1 • op0
sw = op5 • ~op4 • op3 • ~op2 • op1 • op0
beq = ~op5 • ~op4 • ~op3 • op2 • ~op1 • ~op0
jump = ~op5 • ~op4 • ~op3 • ~op2 • op1 • ~op0

Instruction<31:0>

<21:25>

<16:20>

<11:15>

<0:15>
Imm16RdRsRt

Adr

Inst
Memory

Op

<0:5>

Fun

<26:31>

Op 0-5 are really Instruction bits 26-31
Func 0-5 are really Instruction bits 0-5

How do we implement this in gates?

add = rtype • func5 • ~func4 • ~func3 • ~func2 • ~func1 • ~func0

sub = rtype • func5 • ~func4 • ~func3 • ~func2 • func1 • ~func0

Boolean Exprs for Controller

2014-04-11 Spring 2014 -- Lecture #31 9

RegDst = add + sub
ALUSrc = ori + lw + sw
MemtoReg = lw
RegWrite = add + sub + ori + lw
MemWrite = sw
nPCsel = beq
Jump = jump
ExtOp = lw + sw
ALUctr[0] = sub + beq
ALUctr[1] = ori

(assume ALUctr is 00 ADD, 01 SUB, 10 OR)

How do we implement this in gates?

Controller Implementation

4/9/2014 Spring 2014 -- Lecture #31 10

add
sub
ori
lw
sw
beq
jump

RegDst
ALUSrc
MemtoReg
RegWrite
MemWrite
nPCsel
Jump
ExtOp
ALUctr[0]
ALUctr[1]

“AND” logic “OR” logic

opcode func

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g.,MIPS)

Machine Language
Program (MIPS)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture
Implementation

Call home, we’ve made HW/SW contact!
Administrivia/Clicker

• How many hours of fun from proj3 so far?
a) 0 <= F <= 4
b) 4 < F <= 8
c) 8 < F <= 12
d) 12 < F <= 16
e) 16 < F

4/9/2014

2

Administrivia/Clicker

• How many Gflop/s right now?
a) 0 <= F <= 4
b) 4 < F <= 8
c) 8 < F <= 12
d) 12 < F <= 16
e) 16 < F

Review: Single-cycle Processor

• Five steps to design a processor:
1. Analyze instruction set

datapath requirements
2. Select set of datapath

components & establish
clock methodology

3. Assemble datapath meeting
the requirements

4. Analyze implementation of each instruction to determine
setting of control points that effects the register transfer.

5. Assemble the control logic
• Formulate Logic Equations
• Design Circuits

Control

Datapath

Memory

Processor
Input

Output

Single Cycle Performance
• Assume time for actions are

– 100ps for register read or write; 200ps for other events

• Clock rate is?
Instr Instr fetch Register

read
ALU op Memory

access
Register
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

• What can we do to improve clock rate?
• Will this improve performance as well?

Want increased clock rate to mean faster programs

Single Cycle Performance
• Assume time for actions are

– 100ps for register read or write; 200ps for other events

• Clock rate is?
Instr Instr fetch Register

read
ALU op Memory

access
Register
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

• What can we do to improve clock rate?
• Will this improve performance as well?

Want increased clock rate to mean faster programs

Gotta Do Laundry
• Ann, Brian, Cathy, Dave

each have one load of clothes to
wash, dry, fold, and put away
– Washer takes 30 minutes

– Dryer takes 30 minutes

– “Folder” takes 30 minutes

– “Stasher” takes 30 minutes to put
clothes into drawers

A B C D

Sequential Laundry

• Sequential laundry takes
8 hours for 4 loads

T
a
s
k

O
r
d
e
r

B

C
D

A
30

Time
3030 3030 30 3030 3030 3030 3030 3030

6 PM 7 8 9 10 11 12 1 2 AM

4/9/2014

3

Pipelined Laundry

• Pipelined laundry takes
3.5 hours for 4 loads!

T
a
s
k

O
r
d
e
r

B
C
D

A

12 2 AM6 PM 7 8 9 10 11 1

Time303030 3030 30 30

• Pipelining doesn’t help latency
of single task, it helps
throughput of entire workload

• Multiple tasks operating
simultaneously using different
resources

• Potential speedup = Number
pipe stages

• Time to “fill” pipeline and time
to “drain” it reduces speedup:
2.3X v. 4X in this example

6 PM 7 8 9
Time

B
C
D

A
3030 30 3030 30 30

T
a
s
k

O
r
d
e
r

Pipelining Lessons (1/2)

• Suppose new Washer
takes 20 minutes, new
Stasher takes 20
minutes. How much
faster is pipeline?

• Pipeline rate limited by
slowest pipeline stage

• Unbalanced lengths of
pipe stages reduces
speedup

6 PM 7 8 9
Time

B
C
D

A
3030 30 3030 30 30

T
a
s
k

O
r
d
e
r

Pipelining Lessons (2/2)
1) IFtch: Instruction Fetch, Increment PC
2) Dcd: Instruction Decode, Read Registers
3) Exec:

Mem-ref: Calculate Address
Arith-log: Perform Operation

4) Mem:
Load: Read Data from Memory
Store: Write Data to Memory

5) WB: Write Data Back to Register

Steps in Executing MIPS

P
C

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1. Instruction
Fetch

2. Decode/
Register Read

3. Execute 4. Memory 5. Write
Back

Single Cycle Datapath

P
C

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1. Instruction
Fetch

2. Decode/
Register Read

3. Execute 4. Memory 5. Write
Back

Pipeline registers

• Need registers between stages
– To hold information produced in previous cycle

4/9/2014

4

More Detailed Pipeline IF for Load, Store, …

ID for Load, Store, … EX for Load

MEM for Load WB for Load – Oops!

Wrong
register
number

4/9/2014

5

Corrected Datapath for Load So, in conclusion
• You now know how to implement the control

logic for the single-cycle CPU.
– (actually, you already knew it!)

• Pipelining improves performance by increasing
instruction throughput: exploits ILP
– Executes multiple instructions in parallel
– Each instruction has the same latency

• Next: hazards in pipelining:
– Structure, data, control

