UCB CS61C : Machine Structures
Lecture 34 - Virtual Memory |

BOINC ON ANDROID PHONES

“HTC released Power To Give, a mobile app that enables the processing
powers of eligible Android smartphones to contribute to various scientific
research projects throughout the world. The app relies on ‘volunteer
computing,” in which people provide the processing capabilities of their
computers and other devices to existing research projects of their choice. A
platform developed in 2002 by UC Berkeley researchers called the Berkeley
Open Infrastructure for Networking Computing, or BOINC, provides the
technology that serves as the backbone of the app.” B —
www.dailycal.org/2014/04/14/new-app-takes-

processing-powers-android-smartphones-
contribute-scientific-research/

Review

= Cache design choices:
Size of cache: speed v. capacity
Block size (i.e., cache aspect ratio)
Write Policy (Write through v. write back)
Associativity choice of N (direct-mapped v. set v. fully

associative)

Block replacement policy
2nd level cache?

3rd level cache?

= Use performance model to pick between
chouces depending on programs, technology,

/ CS6ICL33 V'rtu I Mem ory | (2) Garcia, Spring 2014 © UCB

Another View of the Memory Hierarchy

Regs Upper Level
Instr. Operands s
Faster

|Cache |
| Blocks

Thus far ‘ L2 Cache ‘

I Blocks

Virtual I Pages

Memo
Next: { 2.

Memory Disk

I Files

\4

Larger
Lower Level

pring 2014 © UCB

Memory Hierarchy Requirements

= |f Principle of Locality allows caches to offer
(close to) speed of cache memory with size of
DRAM memory, then recursively why not use
at next level to give speed of DRAM memory,
size of Disk memory?

= While we'’re at it, what other things do we
need from our memory system?

oy
) . CS6I1C L33 Virtual Memory | (4) Garcia, Spring 2014 © UCB

Memory Hierarchy Requirements

= Allow muiltiple to simultaneously
occupy memory and provide protection -
don’t let one program read/write memory
from another

= Address space - give each program the
illusion that it has its own private memory

= Suppose code starts at address 0x40000000. But
different processes have different code, both

residing at the same address. So each program has
a different view of memory.

. CS6I1C L33 Virtual Memory | (5) Garcia, Spring 2014 © UCB

Virtual Memory

= Next level in the memory hierarchy:

o Provides program with illusion of a very large main
memory:

o Working set of “pages” reside in main memory - others
reside on disk.

Also allows OS to share memory, protect

programs from each other

Today, more important for protection vs. just
another level of memory hierarchy

Each process thinks it has all the memory to itself
(Historically, it predates caches)

. CS6I1C L33 Virtual Memory | (6) Garcia, Spring 2014 © UCB

Virtual to Physical Address Translation

Program .
operates in LW rzgﬁg:@l

its virtual j—————py- C (—
mapping (incl. caches)

address
space

Each program operates in its own virtual
address space; ~only program running

Each is protected from the other
OS can decide where each goes in memory

;/ Hardware gives virtual = physical mapping

oy
) ~# €S61C L33 Virtual Memory | (7) Garcia, Spring 2014 © UCB

Analogy

Book title like virtual address

Library of Congress call number like physical
(o To fo [(=T3S

Card catalogue like page table, mapping
from book title to call #

On card for book, in local library vs. in
another branch like valid bit indicating in
main memory vs. on disk

On card, available for 2-hour in library use
(vs. 2-week checkout) like access rights

B AP
p— - “) CS61C L33 Virtual Memory | (8) Garcia, Spring 2014 © UCB

Simple Example: Base and Bound Reg

o0

User C

OS

oy
) 2 CS61C L33 Virtual Memory | (9)

N\

~—_ Enough space for User D,
but discontinuous

(“fragmentation problem”)
« Want:

ediscontinuous mapping
®Process size >> mem

 Addition not enough!

— Use Indirection!

Garcia, Spring 2014 © UCB

Mapping Virtual Memory to Physical Memory

= Divide into equal sized
chunks (about 4 KB - 8 KB) -
!

= Any chunk of Virtual Memory
assigned to any chuck of Physical

MemOry (u n)
é’h sical Memory

64 M
Heap

Static

Paging Organization (assume 1 KB pages)

Page is unit Virtual
of mapping Address

0 \pageO\ 1K \ 0

024 1K Addr |~ 1024
Trans| 2043

168 [page7] 1K | MAP

\31744 [page 3 \

Page also unit of
transfer from disk to Virtua
physical memory Memory

oy
. . CS61C L33 Virtual Memory | (1) Garcia, Spring 2014 © UCB

Virtual Memory Mapping Function

= Cannot have simple function to predict
arbitrary mapping

= Use table lookup of mappings
‘ Page Number ‘ OEff’:;gw
= Use table lookup (” “) for
mappings: Page number is index
= Virtual Memory Mapping Function

= Physical Offset = Virtual Offset

= Physical Page Number
= PageTable[Virtual Page Number]

(P.P.N. also called ” “)

CS61C L33 Virtual Memory | (12) Garcia, Spring 2014 © UCB

."f ,«/ 1
v/
b o -

Address Mapping:

Virtual Address:

Ipage no. | |offset]
|

Page Table - =
Base Reg Vi AR

index Val ;Access
into -id ;Rights }

page : : Physical
table Memory
‘ : Address

Page Table located in physical memory

~# CS61C L33 Virtual Memory | (13) Garcia, Spring 2014 © UCB

Page Table

= A page table is an operating system structure
which contains the mapping of virtual
addresses to physical locations

= There are several different ways, all up to the
operating system, to keep this data around

= Each process running in the operating system
has its own page table
o “ “ of process is PC, all registers, plus page table

= OS changes page tables by changing contents of
Page Table Base Register

~# CS61C L33 Virtual Memory | (14) Garcia, Spring 2014 © UCB

Requirements revisited
= Remember the motivation for VM:

= Different physical pages can be allocated to different
processes (sharing)

= A process can only touch pages in its own page
table (protection)

= Since programs work only with virtual addresses,
different programs can have different data/code at
the same address!

= What about the memory hierarchy?

P .f':
Q&
~*) CS6IC L33 Virtual Memory | (15) Garcia, Spring 2014 © UCB

Page Table Entry (PTE) Format

= Contains either Physical Page Number or
indication not in Main Memory

= OS maps to disk if Not Valid (V = 0)

VT AR PPN

Val iAccess :Physical
-id iRights iPage
: :Number

Page Table

Vi AR PPN

= |f valid, also check if have permission to use
. page: (A.R.) may be Read Only,
(7;/ Read/Write, Executable

~# CS61C L33 Virtual Memory | (16) Garcia, Spring 2014 © UCB

Paging/Virtual Memory Multiple Processes
- UserA: UserB:

Virtual Memory _ Virtual Memory
00 | Physical 00

Memory Stack

64 M5 [

—

Comparing the 2 levels of hierarchy

Cache version Virtual Memory vers.
Block or Line Page

Miss Page Fault

Block Size: 32-64B Page Size: 4K-8KB
Placement: Fully Associative

Direct Mapped,
N-way Set Associative

Replacement: Least Recently Used
LRU or Random (LRU)

Write Thru or Back Write Back

~# CS61C L33 Virtual Memory | (18) Garcia, Spring 2014 © UCB

Notes on Page Table

= Solves Fragmentation problem: all chunks
same size, so dll holes can be used

= OS must reserve “Swap Space” on disk

= To grow a process, ask Operating System
f unused pages, OS uses them first

f not, OS swaps some old pages to disk

Least Recently Used to pick pages to swap)

= Will add details, but Page Table is essence of
Vlrtual Memory

CS61C L33 Virtual Memory | (19) Garcia, Spring 2014 © UCB

Why would a process need to “grow”?

~ FFFF FFFF,,

= A program’s
confains 4 regions:

- local variables,
downward

: space requested for

pointers viomalloc () ;
resizes dynamically,

upward static data
- variables declared

outside main, does not grow or code

shrink e
For now, OS somehow
: loaded when program prevents accesses between stack

//% starts, does not change and heap (gray hash lines).

. CS61C L33 Virtual Memory | (20) Garcia, Spring 2014 © UCB

Virtual Memory Problem #]1

= Map every address = 1 indirection via Page
Table in memory per virtual address = 1 virtual
memory accesses =

2 physical memory accesses = SLOW!
Observation: since locality in pages of data, there

must be locality in of
those pages

Since small is fast, why not use a small cache of
virtual to physical address translations to make
translation fast?

= For historical reasons, cache is called a
, or

oy
) . CS61C L33 Virtual Memory | (21) Garcia, Spring 2014 © UCB

Translation Look-Aside Buffers (TLBs)

= TLBs usually small, typically 128 - 256 entries

= Like any other cache, the TLB can be direct
mapped, set associative, or fully associative

Processor

VA

——

// :))
(114

PA

 ——

Cache

miss

hit

“~» CS61C L33 Virtual Memory | (22)

data

1 Memory

Main

_ On TLB miss, get page table entry from main memory

Garcia, Spring 2014 © UCB

Peer Instruction

Locality is important yet different for cache and
virtual memory (VM): temporal locality for caches
but spatial locality for VM

VM helps both with security and cost

oy
. CS6IC L33 Virtual Memory | (23) Garcia, Spring 2014 © UCB

And in conclusion...

= Manage memory to disk? Treat as cache
= |Included protection as bonus, now critical

= Use Page Table of mappings
vs. tag/data in cache

= TLB is cache of Virtual = Physical addr trans

= Virtual Memory allows protected sharing of
memory between processes

= Spatial Locality means Working Set of Pages
is all that must be in memory for process to
run fairly well

oy
) . CS6IC L33 Virtual Memory | (25) Garcia, Spring 2014 © UCB

