CS 61C: Great Ideas in
Computer Architecture

Virtual Memory Il

Instructor: Dan Garcia

Virtual Memory Mapping Function

* How large is main memory? Disk?

— Don’t know! Designed to be interchangeable
components

— Need a system that works regardless of sizes
* Use lookup table (page table) to deal with
arbitrary mapping

— Index lookup table by # of pages in VM
(not all entries will be used/valid)

— Size of PM will affect size of stored translation

Address Mapping

Pages are aligned in memory

— Border address of each page has same lowest bits

— Page size is same in VM and PM, so denote lowest
O = log,(page size/byte) bits as page offset

Use remaining upper address bits in mapping

— Tells you which page you want (similar to Tag)

[Physical Page #|Page Offset]
t t i)

I
Not necessarily Same Size
the same size

Address Mapping: Page Table

* Page Table functionality:

— Incoming request is Virtual Address (VA),
want Physical Address (PA)

— Physical Offset = Virtual Offset (page-aligned)
— So just swap Virtual Page Number (VPN) for Physical Page

Number (PPN)
Physical Page #

* Implementation?
— Use VPN as index into PT
— Store PPN and management bits (Valid, Access Rights)
— Does NOT store actual data (the data sits in PM)

Page Table Layout

ffset 3) Concatenate
0 Ise PPN and offset

Page Table
V1 AR | PPN
-
R b
1) index [EA2XO1 2) check — [PPN [offset
intoPT |1 1 Validand __|
usingVPN | | | Access | Physical
1 | Rights bits Address
4) Use PA
to access

memory

Question: How many bits wide are the following %

fields?

* 16 KiB pages
* 40-bit virtual addresses
* 64 GiB physical memory

VPN PPN
A) 26 26
B) 24 20
c)

D) 26 22

Retrieving Data from Memory

FpTUser1 | Physical
Memory

1) Access page
table for address
translation

Address Space

User2Virtual Requires two accesses
Address Space

2) Access correct
physical address

2/
77777

of physical memory!

Where Are TLBs Located?

* Which should we check first: Cache or TLB?
— Can cache hold requested data if corresponding
page is not in physical memory? No
— With TLB first, does cache receive VA or PA?

A

hit misg 7
CPU TLB | PA | cache Main
ata| Memory
l miss] hit
Page Notice that it is now the
Table TLB that does translation,

not the Page Table!

Question: How many bits wide are the Q
following? E
* 16 KiB pages

* 40-bit virtual addresses

* 64 GiB physical memory

* 2-way set associative TLB with 512 entries

Valid | Dirty| Ref |Access Rights| TLB Tag PPN
X X X XX
TLBTag TLBIndex TLB Entry
A) 12 14 38
[B) 18 8 45 J
C) 14 12 40

D) 17 9 a3

TLBs vs. Caches

Data at
memory
address VPN

PPN

On miss: | Access next

main memory memory

* TLBs usually small, typically 16 — 512 entries

On miss: | Access Page
cache level / Table in main

* TLB access time comparable to cache (« main memory)

* TLBs can have associativity
— Usually fully/highly associative

Address Translation Using TLB

’—A—\
Page Offset | Virtual Address

TLB
i PPN
i PA split two
: different
ways!
l PPN | Page Offset l
, : Physical Address
Data|| Tag | Block Data [Tag [index [offset |
Cachel| ! 1 J
| Note: TIO for VA & PA
unrelated)
Administrivia
* TAs?

Fetching Data on a Memory Read

1) Check TLB (input: VPN, output: PPN)
— TLB Hit: Fetch translation, return PPN

— TLB Miiss: Check page table (in memory)
* Page Table Hit: Load page table entry into TLB

* Page Table Miss (Page Fault): Fetch page from disk to
memory, update corresponding page table entry, then
load entry into TLB

2) Check cache (input: PPN, output: data)
— Cache Hit: Return data value to processor

— Cache Miss: Fetch data value from memory, store
itin cache, return it to processor

Page Faults

* Load the page off the disk into a free page of
memory

— Switch to some other process while we wait
* Interrupt thrown when page loaded and the
process' page table is updated
— When we switch back to the task, the desired data
will be in memory
* If memory full, replace page (LRU), writing back if
necessary, and update both page table entries

— Continuous swapping between disk and memory
called “thrashing”

Performance Metrics

* VM performance also uses Hit/Miss Rates and
Miss Penalties

— TLB Miss Rate: Fraction of TLB accesses that
result in a TLB Miss

— Page Table Miss Rate: Fraction of PT accesses
that result in a page fault

* Caching performance definitions remain the
same

— Somewhat independent, as TLB will always pass
PA to cache regardless of TLB hit or miss

Question: A program tries to load a word at X Q
that causes a TLB miss but not a page fault. Are m
the following statements TRUE or FALSE?

1) The page table does not contain a valid
mapping for the virtual page corresponding
to the address X

2) The word that the program is trying to load is
present in physical memory

12
A
C)
D)T T

Data Fetch Scenarios

Main
Memory

* Are the following scenarios for a single data
access possible?

— TLB Miss, Page Fault Yes
— TLB Hit, Page Table Hit No
— TLB Miss, Cache Hit Yes
— Page Table Hit, Cache Miss Yes
— Page Fault, Cache Hit No

VM Performance

* Virtual Memory is the level of the memory
hierarchy that sits below main memory

— TLB comes before cache, but affects transfer of
data from disk to main memory

— Previously we assumed main memory was lowest
level, now we just have to account for disk
accesses

* Same CPI, AMAT equations apply, but now
treat main memory like a mid-level cache

Typical Performance Stats

secondary
memory
._. CPU
Caching Demand paging

cache entry page frame

cache block (=32 bytes) page (=4Ki bytes)

cache miss rate (1% to 20%) page miss rate (<0.001%)

cache hit (=1 cycle) page hit (=100 cycles)

cache miss (=100 cycles) page miss (=5M cycles)

Impact of Paging on AMAT (1/2)

Memory Parameters:
— L1 cache hit = 1 clock cycles, hit 95% of accesses
— L2 cache hit = 10 clock cycles, hit 60% of L1 misses
— DRAM = 200 clock cycles (=100 nanoseconds)
— Disk = 20,000,000 clock cycles (=10 milliseconds)
* Average Memory Access Time (no paging):

— 1+ 5%x10 + 5%x40%x200 = 5.5 clock cycles
* Average Memory Access Time (with paging):
— 5.5 (AMAT with no paging) + ?

Impact of Paging on AMAT (2/2)

* Average Memory Access Time (with paging) =
* 5.5+ 5%x40%x (1-HR,)*20,000,000
* AMAT if HRy,o, = 99%7?
¢ 5.5+ 0.02x0.01x20,000,000 = 4005.5 (=728x slower)

¢ 1in 20,000 memory accesses goes to disk: 10 sec
program takes 2 hours!

* AMAT if HRy,q,, = 99.9%?

¢ 5.5+ 0.02x0.001x20,000,000 = 405.5
* AMAT if HRy,,,, = 99.9999%

¢ 5.5+ 0.02x0.000001x20,000,000 = 5.9

Impact of TLBs on Performance

* Each TLB miss to Page Table ~ L1 Cache miss

e TLB Reach: Amount of virtual address space
that can be simultaneously mapped by TLB:
— TLB typically has 128 entries of page size 4-8 KiB
— 128 x 4 KiB =512 KiB = just 0.5 MiB

* What can you do to have better performance?

— Multi-level TLBs <—— Conceptually same as multi-level caches
Not covered

— Variable page size (segments)
— Special situationally-used “superpages”| here

Aside: Context Switching

* How does a single processor run many
programs at once?

* Context switch: Changing of internal state of
processor (switching between processes)

— Save register values (and PC) and change value in
Page Table Base register

* What happens to the TLB?
— Current entries are for different process
— Set all entries to invalid on context switch

Virtual Memory Summary

User program view: * Virtual memory provides:

— Contiguous memory — lllusion of contiguous memory

— Start from some set VA — All programs starting at same set
— “Infinitely” large address

— Is the only running program — lllusion of ~ infinite memory

(232 or 2% bytes)
— Protection, Sharing
* Implementation:

Reality:
— Non-contiguous memory
— Start wherever available

memory is — Divide memory into chunks (pages)
— Finite size — OS controls page table that maps
— Many programs running virtual into physical addresses

simultaneously — memory as a cache for disk

— TLB is a cache for the page table

