
CS61C Spring 2015 Discussion 3
1. Translate the following C code into MIPS.
// Strcpy:
// $s1 -> char s1[] = “Hello!”;
// $s2 -> char *s2 =
// malloc(sizeof(char)*7);
int i=0;
do {
 s2[i] = s1[i];
 i++;
} while(s1[i] != '\0');
s2[i] = '\0';

 addiu $t0, $0, 0
Loop: addu $t1, $s1, $t0 # s1[i]
 addu $t2, $s2, $t0 # s2[i]
 lb $t3, 0($t1) # char is
 sb $t3, 0($t2) # 1 byte!
 addiu $t0, $t0, 1
 addiu $t1, $t1, 1

Done: sb $t4, 1($t2)

// Nth_Fibonacci(n):
// $s0 -> n, $s1 -> fib
// $t0 -> i, $t1 -> j
// Assume fib, i, j are these values
int fib = 1, i = 1, j = 1;

if (n==0) return 0;
else if (n==1) return 1;
n -= 2;
while (n != 0) {
 fib = i + j;
 j = i;
 i = fib;
 n--;
}
return fib;

 ...

 addiu $s0, $s0, -2

Loop: ________________
 addu $s1, $t0, $t1
 addiu $t0, $t1, 0
 addiu $t1, $s1, 0
 addiu $s0, $s0, -1

Ret0: addiu $v0, $0, 0
 j Done
Ret1: addiu $v0, $0, 1
 j Done
RetF: addu $v0, $0, $s1
Done: ...

// Collatz conjecture
// $s0 -> n
unsigned n;
L1: if (n % 2) goto L2;
goto L3;
L2: if (n == 1) goto L4;
n = 3 * n + 1;
goto L1;
L3: n = n >> 1;
goto L1;
L4: return n;

L1: addiu $t0, $0, 2
 div $s0, $t0 # puts (n%2) in $hi
 mfhi $t0 # sets $t0 = (n%2)

 j L3
L2: addiu $t0, $0, 1

 addiu $t0, $0, 3
 mul $s0, $s0, $t0
 addiu $s0, $s0, 1

L3: srl $s0, $s0, 1

L4: ...

MIPS Addressing Modes

● We have several addressing modes to access memory (immediate not listed):

o Base displacement addressing: Adds an immediate to a register value to create a memory address (used
for lw, lb, sw, sb)

o PC-relative addressing: Uses the PC (actually the current PC plus four) and adds the I-value of the
instruction (multiplied by 4) to create an address (used by I-format branching instructions like beq, bne)

o Pseudodirect addressing: Uses the upper four bits of the PC and concatenates a 26-bit value from the
instruction (with implicit 00 lowest bits) to make a 32-bit address (used by J-format instructions)

o Register Addressing: Uses the value in a register as a memory address (jr)

2. You need to jump to an instruction that 2^28 + 4 bytes higher than the current PC. How do you do it? Assume
you know the exact destination address at compile time. (Hint: you need multiple instructions)

3. You now need to branch to an instruction 2^17 + 4 bytes higher than the current PC, when $t0 equals 0. Assume
that we’re not jumping to a new 2^28 byte block. Write MIPS to do this.

4. Given the following MIPS code (and instruction addresses), fill in the blank fields for the following instructions
(you’ll need your green sheet!):

0x002cff00: loop: addu $t0, $t0, $t0 | 0 | | | | | |
0x002cff04: jal foo | 3 | |
0x002cff08: bne $t0, $zero, loop | 5 | 8 | | |
...
0x00300004: foo: jr $ra $ra=________________________

5. What instruction is 0x00008A03?

