State

1. Fill out the timing diagram for the circuit below:

2. Fill out the timing diagram for the circuit below:

Logic Gates

1. Label the following logic gates:

2. Convert the following to boolean expressions:
(a) NAND
(b) XOR
(c) XNOR
3. Create an AND gate using only NAND gates.
4. How many different two-input logic gates can there be? How many n-input logic gates?

Boolean Logic

$1+A=1$	$A+\bar{A}=1$	$A+A B=A$	$(A+B)(A+C)=A+B C$
$0 B=0$	$B \bar{B}=0$	$A+\bar{A} B=A+B$	
DeMorgan's Law:	$\overline{A B}=\bar{A}+\bar{B}$	$\overline{A+B}=\bar{A} \bar{B}$	

1. Minimize the following boolean expressions:
(a) Standard: $(A+B)(A+\bar{B}) C$
(b) Grouping \& Extra Terms: $\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+A B \bar{C}+A \bar{B} \bar{C}+A B C+A \bar{B} C$
(c) DeMorgan's: $\overline{A(\bar{B} \bar{C}+B C)}$
