Discussion 13: I/O, ECC/Parity, RAID

I/O

1. Fill this table of polling and interrupts.

Operation	Definition	Pro / Good for	Con / Bad for
Polling			
Interrupts			
_			

2. Memory Mapped I/O

Certain memory addresses correspond to registers in I/O devices and not normal memory. **0xFFFF0000 – Receiver Control:** Lowest two bits are interrupt enable bit and ready bit. **0xFFFF0004 – Receiver Data:** Received data stored at lowest byte. **0xFFFF0008 – Transmitter Control** Lowest two bits are interrupt enable bit and ready bit. **0xFFFF000C – Transmitter Data** Transmitted data stored at lowest byte.

Write MIPS code to read a byte from the receiver and immediately send it to the transmitter.

Hamming ECC

Recall the basic structure of a Hamming code. Given bits $1, \ldots, m$, the bit at position 2^n is parity for all the bits with a 1 in position n. For example, the first bit is chosen such that the sum of all odd-numbered bits is even.

Bit	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Data	<u>P1</u>	<u>P2</u>	D1	<u>P4</u>	D2	D3	D4	<u>P8</u>	D5	D6	D7	D8	D9	D10	D11
P1	X		X		X		X		Х		Х		X		X
P2		X	X			X	X			X	Х			X	X
P4				X	X	X	X					Х	X	X	X
P8								X	Х	X	Х	Х	X	X	X

- 1. How many bits do we need to add to 0011_2 to allow single error correction?
- 2. Which locations in 0011_2 would parity bits be included?
- 3. Which bits does each parity bit cover in 0011_2 ?
- 4. Write the completed coded representation for 0011_2 to enable single error correction.
- 5. How can we enable an additional double error detection on top of this?
- 6. Find the original bits given the following SEC Hamming Code: 0110111₂
- 7. Find the original bits given the following SEC Hamming Code: 1001000₂
- 8. Find the original bits given the following SEC Hamming Code: 010011010000110₂

RAID

Fill out the following table:

	Configuration	Pro / Good for	Con / Bad for
RAID 0			
RAID 1			
RAID 2			
RAID 3			
RAID 4			
RAID 5			