Discussion 13: I/O, ECC/Parity, RAID

I/O

1. Fill this table of polling and interrupts.

Operation	Definition	Pro / Good for...	Con / Bad for...
Polling			
Interrupts			

2. Memory Mapped I/O

Certain memory addresses correspond to registers in I/O devices and not normal memory.
0xFFFF0000 - Receiver Control:
Lowest two bits are interrupt enable bit and ready bit.
0xFFFF0004 - Receiver Data:
Received data stored at lowest byte.
0xFFFF0008 - Transmitter Control
Lowest two bits are interrupt enable bit and ready bit.
0xFFFF000C - Transmitter Data
Transmitted data stored at lowest byte.
Write MIPS code to read a byte from the receiver and immediately send it to the transmitter.

Hamming ECC

Recall the basic structure of a Hamming code. Given bits $1, \ldots, m$, the bit at position 2^{n} is parity for all the bits with a 1 in position n. For example, the first bit is chosen such that the sum of all odd-numbered bits is even.

Bit	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Data	$\underline{\mathrm{P} 1}$	$\underline{\mathrm{P} 2}$	D 1	$\underline{\mathrm{P} 4}$	D 2	D 3	D 4	$\underline{\mathrm{P} 8}$	D 5	D 6	D 7	D 8	D 9	D 10	D 11
P 1	X		X		X		X		X		X		X		X
P 2		X	X			X	X			X	X			X	X
P 4				X	X	X	X					X	X	X	X
P 8								X	X	X	X	X	X	X	X

1. How many bits do we need to add to 0011_{2} to allow single error correction?
2. Which locations in 0011_{2} would parity bits be included?
3. Which bits does each parity bit cover in 0011_{2} ?
4. Write the completed coded representation for 0011_{2} to enable single error correction.
5. How can we enable an additional double error detection on top of this?
6. Find the original bits given the following SEC Hamming Code: 0110111_{2}
7. Find the original bits given the following SEC Hamming Code: 1001000_{2}
8. Find the original bits given the following SEC Hamming Code: 010011010000110_{2}

RAID

Fill out the following table:

	Configuration	Pro / Good for...	Con / Bad for...
RAID 0			
RAID 1			
RAID 2			
RAID 3			
RAID 4			
RAID 5			

