1/27/15

CS61C:
Great Ideas in Computer Architecture
Introduction to C, Part Il

Instructors:
Krste Asanovic & Vladimir Stojanovic
http://inst.eecs.Berkeley.edu/~cs61c/sp15

Review: Components of a Computer

Moo e] Memory
Processor Enable? Input
Read/Write
Control 1+
Program
Datapath
Address —Tr
> = Bytes =
- Write i
Registers Data
Arithmetic & Logic Unit Read Data
= ™
====

Processor-Memory Interface 1/0-Memory Interfaces

Address vs. Value

* Consider memory to be a single huge array
— Each cell of the array has an address associated
with it
— Each cell also stores some value
— Do you think they use signed or unsigned
numbers? Negative address?!
* Don’t confuse the address referring to a
memory location with the value stored there

101102 103 104 105 ...

S N N I Y I N A 7 I I O

Pointers
* An address refers to a particular memory
location; e.g., it points to a memory location

* Pointer: A variable that contains the address
of a variable

Location (address) /_\

O Y 3 Y

—/_» X y p
name

Pointer Syntax

e int *x;

— Tells compiler that variable x is address of an int
* X = &y;

— Tells compiler to assign address of y to x

— & called the “address operator” in this context
ez = *x;

— Tells compiler to assign value at address in x to z

— * called the “dereference operator” in this
context

Creating and Using Pointers

* How to create a pointer:
& operator: get address of a variable

int *p , X7 Note the “*” gets used
P ? x ? 2 different ways in this

In the

x =3 ; declaration to indicate
P ? X 3 that p is going to be a

pointer, and in the

P = &x; -\ printf to get the
P x 3 value pointed to by p.

*How get a value pointed to?
i

(dereference operator): get the value that the pointer points to

printf(“p points to %d\n”,*p);

Using Pointer for Writes

* How to change a variable pointed to?

— Use the dereference operator * on left of
assignment operator =

L7 2ls]

1/27/15

Pointers and Parameter Passing

* Java and C pass parameters “by value”

— Procedure/function/method gets a copy of the
parameter, so changing the copy cannot change the
original

void add_one (int x) {
x =x + 1;
}
int y = 3;
add_one(y);

y remains equal to 3

Pointers and Parameter Passing

* How can we get a function to change the value
held in a variable?

void add_one (int *p) {
*p = *p + 1;

int y = 3;
add_one(&y);

y is now equal to 4

Types of Pointers

* Pointers are used to point to any kind of data
(int, char, a struct, a pointer, etc.)
* Normally a pointer only points to one type
(int, char, a struct, etc.).
—void * is a type that can point to anything
(generic pointer)
— Use void * sparingly to help avoid program bugs,
and security issues, and other bad things!

More C Pointer Dangers

* Declaring a pointer just allocates space to hold the
pointer — does not allocate thing being pointed to!

* Local variables in C are not initialized, they may
contain anything (aka “garbage”)

* What does the following code do?

void £()
{
int *ptr;
*ptr = 5;
}

Pointers and Structures

tyepdef struct { /* dot notation */

int x; int h = pl.x;
int y; p2.y = pl.y;
} Point;
/* arrow notation */
Point pl; int h = paddr->x;
Point p2; int h = (*paddr) .x;

Point *paddr;
/*structure assignment*/
p2 = pl;
Note, C structure assignment is not a “deep

copy”. All members are copied, but not
things pointed to by members. 12

1/27/15

Pointers in C

* Why use pointers?
— If we want to pass a large struct or array, it’s easier /
faster / etc. to pass a pointer than the whole thing
— Want to modify an object, not just pass its value
— In general, pointers allow cleaner, more compact code
* So what are the drawbacks?

— Pointers are probably the single largest source of bugs
in C, so be careful anytime you deal with them

* Most problematic with dynamic memory management—
coming up next lecture

* Dangling references and memory leaks

Why Pointers in C?

At time C was invented (early 1970s), compilers often
didn’t produce efficient code

— Computers 25,000 times faster today, compilers better

C designed to let programmer say what they want code
to do without compiler getting in way

— Even give compiler hints which registers to use!

Today, many applications attain acceptable performance
using higher-level languages without pointers

Low-level system code still needs low-level access via
pointers, hence continued popularity of C

Clickers/Peer Instruction Time
void foo(int *x, int *y)
{ int t;
if ((*x > *y) { t = *y; *y = *x; *x =t}
}
int a=3, b=2, c=1;
foo(&a, &b);
foo(&b, &c);
foo(&a, &b);
printf("a=%d b=%d c=%d\n", a, b, c);

Administrivia

¢ We can accommodate all those on the wait list, but
you have to enroll in a lab section with space!

— Lab section is important, but you can attend different
discussion section

— Enroll into lab with space, and try to swap with someone
later

* HWO due 11:59:59pm Sunday 2/1
— Right after the Superbowl...
Midterm-Il now Thursday April 9 in class

A:a=3 b=2 c=1

B:a=1 b=2 c=3

Resultis: C:a=1 b=3 c=2
D:a=3 b=3 c=3

E:a=1 b=1 c=1

C Arrays

* Declaration:
int ar[2];
declares a 2-element integer array: just a block of
memory

int ar[] = {795, 635};
declares and initializes a 2-element integer array
returns the numth element

C Strings

¢ String in Cis just an array of characters
char string[] = "abc";
* How do you tell how long a string is?

— Last character is followed by a 0 byte
(aka “null terminator”)

int strlen(char s[])

{
int n = 0;
while (s[n] '= 0) n++;
return n;

Array Name / Pointer Duality

* Key Concept: Array variable is a “pointer” to the first
(0th) element
So, array variables almost identical to pointers

— char *stringandchar string[] are nearly
identical declarations

— Differ in subtle ways: incrementing, declaration of filled
arrays

° COI"ISEC]UEI’\CESZ

— aris an array variable, but looks like a pointer

— ar[0] isthe same as *ar

— ar[2] isthe same as * (ar+2)

— Can use pointer arithmetic to conveniently access arrays

1/27/15

Changing a Pointer Argument?

* What if want function to change a pointer?
* What gets printed?

void inc_ptr(int *p) *q = 50
{ p= p+1; }

Tq
int A[3] = {50, 60, 70}; l

int *q = A;
inc_ptr(q); 50 | 60 | 70

printf(“*q = %d\n”, *q);

Pointer to a Pointer

* Solution! Pass a pointer to a pointer, declared
as **h

* Now what gets printed?

void inc_ptr(int **h) *q = 60

{ *h=*h+1; }
int A[3] = {50, 60, 70};

q q
(N
int *q = A;

inc_ptr(&q); 50 | 60 | 70
printf(“*q = %d\n”, *q);

C Arrays are Very Primitive

* An array in C does not know its own length,
and its bounds are not checked!

— Consequence: We can accidentally access off the
end of an array

— Consequence: We must pass the array and its size
to any procedure that is going to manipulate it
* Segmentation faults and bus errors:
— These are VERY difficult to find;
be careful! (You’ll learn how to debug these in lab)

Use Defined Constants

Array size n; want to access from 0 to n-1, so you should use counter AND
utilize a variable for declaration & incrementation
— Bad pattern
int i, ar[10];
for(i = 0; i < 10; i++){ ... }
— Better pattern
const int ARRAY SIZE = 10
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }

Accessing elements:
ar [num]
SINGLE SOURCE OF TRUTH

— You're utilizing indirection and avoiding maintaining two copies of the number
10

— DRY: “Don’t Repeat Yourself”

Pointing to Different Size Objects

* Modern machines are “byte-addressable”

— Hardware’s memory composed of 8-bit storage cells, each has a
unique address

* A C pointer is just abstracted memory address

* Type declaration tells compiler how many bytes to fetch on

each access through pointer
— E.g., 32-bit integer stored in 4 consecutive 8-bit bytes

short *y int *x char *z

59 58 57 SGA 54 53 52 51 50 49 48’[7 46 45 44 43,[2 Byte address

16-bit short stored

HENEEEEEEEEEEEEEEE
— Y

l_'_l

32-bit integer
stored in four bytes

8-bit character

in two bytes stored in one byte

sizeof() operator

* sizeof(type) returns number of bytes in object

— But number of bits in a byte is not standardized

* In olden times, when dragons roamed the earth, bytes
could be 5, 6, 7, 9 bits long

* By definition, sizeof(char)==1
* Can take sizeof(arr), or sizeof(structtype)

* We'll see more of sizeof when we look at
dynamic memory management

1/27/15

Pointer Arithmetic

pointer + number pointer — number
e.g., pointer+ 1 adds 1 something to a pointer

char *p; int *pi
char a; int a;
char b; int b;
p = sa In each, p now points to b p = &a;
P += 1; <+ (Assuming compiler doesn’t —TP += 1;

reorder variables in memory.
Never code like this!!!!)

Adds 1*sizeof (char)
to the memory address

Adds 1*sizeof (int)
to the memory address

Pointer arithmetic should be used cautiously

Arrays and Pointers
Passing arrays:

. Must explicitly
Really 1nf{ *array pass t'he size

Arrays and Pointers

* Array =~ pointer to the initial (Oth) array ot \
element .
foo(int array[],

unsigned int size)
a[i] = *(a+i) ¢

}

array[size - 1]

* An array is passed to a function as a pointer
— The array size is lost! int
main (void)

* Usually bad style to interchange arrays and int a[10], b[5];

int
foo (int array[],
unsigned int size)
{
PR,
| — What does this print? 8

printf (“%d\n”, sizeof (array)); *| N
... because array is really

a pointer (and a pointer is
architecture dependent, but
likely to be 8 on modern
machines!)

}

int
main (void)
{
int a[10], b[5];
.. foo(a, 10).. foo(b, 5) ..

What does this print? 40
—
printf (“%d\n”, sizeof(a)); “— |

pointers .. foo(a, 10).. foo(b, 5) ..
— Avoid pointer arithmetic! }
Arrays and Pointers
int i; int *p;

int array[10]; int array[10];

{ {
array[i] = ..; "

} }

These code sequences have the same effect!

Clickers/Peer Instruction Time
int x[5] = { 2, 4, 6, 8, 10 };
int *p = x;
int **pp = &p;

(*pp)++;
(*(*pp)) ++;
printf("%d\n", *p);

Result is:

A:2

B:3

C:4

D:5

E: None of the above

1/27/15

In the News (1/23/2015):
Google Exposing Apple Security Bugs

* Google security published details of three bugs in
Apple OS X (90 days after privately notifying Apple)

— One network stack problem fixed in Yosemite, all in next
beta

— One is dereferencing a null pointer !
— One is zeroing wrong part of memory !

¢ Separately, Google announces it won’t patch
WebKit vulnerability affecting Android 4.3 and
below (only about 930 million active users)

Concise strlen()

int strlen(char *s)
{
char *p = s;
while (*p++)
; /* Null body of while */
return (p - s - 1);

What happens if there is no zero character
at end of string?

Point past end of array?

* Array size n; want to access from 0 to n-1, but
test for exit by comparing to address one
element past the array

int ar[10], *p, *q, sum = 0;

p = &ar[0]; g = &ar[1l0];
while (p '= q)
/* sum = sum + *p; p=p + 1; */
sum += *p++;
— Is this legal?

* Cdefines that one element past end of array
must be a valid address, i.e., not cause an error

Valid Pointer Arithmetic

* Add aninteger to a pointer.

* Subtract 2 pointers (in the same array)

* Compare pointers (<, <=, ==, 1=, >, >=)

» Compare pointer to NULL (indicates that the
pointer points to nothing)

Everything else illegal since makes no sense:
* adding two pointers

* multiplying pointers

* subtract pointer from integer

Argumentsinmain()

* To get arguments to the main function, use:
—int main(int argc, char *argv[])
* What does this mean?
— argc contains the number of strings on the
command line (the executable counts as one, plus
one for each argument). Here argc is 2:
unix% sort myFile
—argv is a pointer to an array containing the
arguments as strings

Example

* foo hello 87

* argc = 3 /* number arguments */
* argv[0] = "foo",

argv[l] = "hello",

argv[2] = "87"

—Array of pointers to strings

And In Conclusion, ...

Pointers are abstraction of machine memory
addresses

Pointer variables are held in memory, and
pointer values are just numbers that can be
manipulated by software

In C, close relationship between array names and
pointers

Pointers know the type of the object they point
to (except void *)

Pointers are powerful but potentially dangerous

1/27/15

