CS 61C:
Great Ideas in Computer Architecture
Intro to Assembly Language, MIPS Intro

Instructors:
Krste Asanovic & Vladimir Stojanovic

http://inst.eecs.Berkeley.edu/~cs61c/sp15

Levels of Representation/
Interpretation

High Level Language f,?{(r]' F;T,[‘f([_ﬂ’]

Program (e.g., C) v[k+1] = temp;

Compiler

as a number,
sw $t0, 4($2) i.e., data or instructions

Program (e.g., MIPS) sw St1, 0(52)

0000 1001 1100 0110 1010 1111 0101 1000

Machine Language 1010 1111 0101 1000 0000 1001 1100 0110
Program (MIPS) 1100 0110 1010 1111 0101 1000 0000 1001
| 0101 1000 0000 1001 1100 0110 1010 1111
Machine
Interpretation

Hardware Architecture Description
(e.g., block diagrams)

Architecture
Implementation

Logic Circuit Description
(Circuit Schematic Diagrams)

From last lecture ...

Computer words and vocabulary are called instructions
and instruction set respectively

MIPS is example RISC instruction set used in CS61C
Rigid format: 1 operation, 2 source operands, 1
destination

— add, sub,mul,div,and,or,sll,srl,sra

— 1w, sw, 1b, sb to move data to/from registers from/to
memory

— beqg, bne, j, slt, slti fordecision/flow control

Simple mappings from arithmetic expressions, array
access, in C to MIPS instructions

Review: Components of a Computer

Processor Memory Input
Enable? < P
Read/Write
Control >
v 4 Program
Datapath
Address =
Program Counter > Bytes
—— Write
Registers—= Data
Arithmetic & Logic Unit Read Data
m D Output
ata N
\ J | |
|

Processor-Memory Interface

|/O-Memory Interfaces

4

How Program is Stored

Memory

R~
NN . a— \
ytes

One MIPS Instruction = 32 bits

How Program is Executed:
Instruction Fetch

Memory
Processor
Read
Instruction
Control = Bits
7 3 \\ Program
Datapath v
Program Counter ([Instruction Bytes
Address
Registers—=
Arithmetic & Logic Unit Data

The program counter (internal register inside processor) holds address of next
instruction to be executed

Computer Decision Making

Based on computation, do something different
In programming languages: if-statement

MIPS: if-statement instruction is
beq registerl, register2, Ll

means: go to statement labeled L1
if (value in registerl) == (value in register2)

....otherwise, go to next statement
beqg stands for branch if equal
Other instruction: bne for branch if not equal

Types of Branches

* Branch — change of control flow

* Conditional Branch — change control flow
depending on outcome of comparison

— branch if equal (beq) or branch if not equal (bne)

* Unconditional Branch — always branch
— a MIPS instruction for this: jump (7)

Example if Statement

* Assuming translations below, compile if block
f>5s0 g—>S$sl h->$s2
i > Ss3 j—> S$s4

if (i == 9) bne $s3,S5s4,Exit
f = g + h; add Ss0,Ssl, $s?2
Exit:
 May need to negate branch condition

Example if-else Statement

* Assuming translations below, compile
f>5s0 g—>S$sl h->$s2
i > Ss3 j—> S$s4

if (1 == 7) bne $s3,$s4,Else
f = g + h; add S$s0,S$sl, $s?2
else 7 Ex1it

f = g - h; Else: sub $s0,$sl, $s2
Exit:

10

Inequalities in MIPS

* Until now, we’ve only tested equalities
(==and !=in C). General programs need to test < and >
as well.

* Introduce MIPS Inequality Instruction:
“Set on Less Than”
Syntax: slt regl,reg2,reg3
Meaning: if (reg2 <reg3)
regl =1;
else regl = 0;
“set” means “change to 1”7,
“reset” means “change to 0.

11

Inequalities in MIPS Cont.

* How do we use this? Compile by hand:
if (g < h) goto Less; #g:5s0, h:Ss1

* Answer: compiled MIPS code...

slt $t0,$s0,$sl#5t0=1ifg<h
bne $t0,S$zero,Less #if St0!=0 goto Less

* Register Szero always contains the value 0, so bne and beq
often use it for comparison after an slt instruction

* s1tu treats registers as unsigned

12

Immediates in Inequalities

« s1ti an immediate version of s1t to
test against constants

Loop:
slti $t0,$s0,1 # St0 = 1 1if
Ss0<1
beq S$t0,S$zero,Loop # goto Loop
1f St0==

(1f (S$s0>=1))

13

Clickers/Peer Instruction

Label: sll1 S$St1,$s3,2
addu $tl1,$tl,$s5
1w $tl1,0($tl)
add , ,Stl
addu $s3,5$s3,5s4
bne $s3,5s2,Label

What is the code above?
A: while loop

B: do ... while loop

C: forloop

D: Notaloop

E: Dunno

14

Clickers/Peer Instruction

e Simple loop in C; A[] is an array of ints
do { = o + Ali];
=i+
} while (i 1= h);
 Use this mapping: , h, i, j, &A[0]
, 552, 583, Ss4, 555

Loop: sll S$tl1,S$s3,2 # Stl= 4+*1
addu $tl1,S$tl,Ss5 # Stl=addr A+41
lw $t1,0(Stl) # Stl=A[i]
add , yStl # g=g+A[1i]
addu $s3,$s3,5s4 # 1=i+]
bne $s3,5s2,Loop # goto Loop
1f 1il=h

15

Six Fundamental Steps in
Calling a Function

. Put parameters in a place where function can
access them

. Transfer control to function

. Acquire (local) storage resources needed for
function

. Perform desired task of the function

. Put result value in a place where calling program
can access it and restore any registers you used

. Return control to point of origin, since a
function can be called from several points in a

program

16

MIPS Function Call Conventions

Registers faster than memory, so use them

Sa0—-$a3: four argument registers to pass
parameters

Sv0—-Sv1:two value registers to return
values

Sra: one return address register to return to
the point of origin

17

Instruction Support for Functions (1/4)

... sum(a,b);... /* a,b:5s0,5s1 */
}

C int sum(int x, int y) {
return x+y;

}
address (shown in decimal)

1000 : :
M ;004 In MIPS, all instructions are 4
| 1008 bytes, and stored in memory
P igiz just like data. So here we
S show the addresses of where

2000 the programs are stored.

2004

Instruction Support for Functions (2/4)

... sum(a,b);...
}

C int sum(int x, int y) {
return x+y;

}

address (shown in decimal)
1000 add $a0,$s0,Szero

M 1004 add Sal,S$sl,Szero
| 1008 addi Sra,Szero,1016
P 1012 3 sum

1016 ..
S

2000 sum: add SvO0,Sa0,Sal
2004 jr Sra # new instruction

Instruction Support for Functions (3/4)

... sum(a,b);... /* a,b:$s0,5s1 */
}

C int sum(int x, int y) {
return x+y;

}
* Question: Why use jr here? Why not use §7?

M . Answer; sum mi ht be called by many places, so we
can't return to a fixed place. The calling proc to sum
| must be able to say “return here” somehow.

2000@ add $vO0,Sa0, Sal
2004 jr Sra # new instruction

Instruction Support for Functions (4/4)

 Single instruction to jump and save return address:
jump and link (jal)

« Before:
1008 addi Sra,S$zero, 1016 #Sra=1016
1012 j sum #goto sum

o After:

1008 jal sum # Sra=1012,goto sum
« Why have a jal?
— Make the common case fast: function calls very common.
— Don’t have to know where code is in memory with jal!

MIPS Function Call Instructions

* Invoke function: jump and link instruction (jal)
(really should be 1aj “link and jump?”)

— “link” means form an address or link that points to
calling site to allow function to return to proper address

— Jumps to address and simultaneously saves the address
of the following instruction in register sra

jJjal FunctionLabel

e Return from function: jump register instruction (7 r)
— Unconditional jump to address specified in register

Jjr S$ra

22

Notes on Functions

Calling program (caller) puts parameters into
registers Sa0-Sa3 and uses jal X to invoke
(callee) at address X

Must have register in computer with address of
currently executing instruction

— Instead of Instruction Address Register (better name),
historically called Program Counter (PC)

— It's a program’s counter; it doesn’t count programs!

What value does jal X place into Sra? ??2??
jr Sra puts addressinside $ra back into PC

Where Are Old Register Values Saved

to Restore Them After Function Call?
Need a place to save old values before call
function, restore them when return, and delete

|deal is stack: last-in-first-out queue
(e.g., stack of plates)

— Push: placing data onto stack

— Pop: removing data from stack

Stack in memory, so need register to point to it
Ssp is the stack pointer in MIPS

Convention is grow from high to low addresses
— Push decrements Ssp, Pop increments Ssp

24

Example

1nt leaf example
(int g, int h, int i, int 7J)

{
int f;
f = (g+h) - (i + 3);
return I;

J

* Parameter variables g, h, i, and 7 in argument
registers $a0, Sal, Sa2,and $a3,and £ in $s0

* Assume need one temporary register St 0

Stack Before, During, After Function

e Need to save old values of Ss0O and St 0

High address

$sp— $sp—

Low address a. b. C.

MIPS Code for leaf example

 Leaf example

addi S$sp,$sp,-8 # adjust stack for 2 items
sw $t0, 4(S$sp) # save StO for use afterwards
sw $s0, 0(S$Ssp) #save $sO for use afterwards

add $s0,Sa0,Sal #f=g+h
add $t0,Sa2,$a3 #t0=i+|
sub $v0,$s0,S$t0 #returnvalue(g+h)—(i+))

lw $s0, 0(Ssp) # restore register $sO for caller
lw $t0, 4(Ssp) # restore register StO for caller
addi $sp, $sp, 8 # adjust stack to delete 2 items
jr Sra # jump back to calling routine

27

What If a Function Calls a Function?
Recursive Function Calls?

* Would clobber valuesin $Sa0 to $a3 and Sra
e What is the solution?

28

Nested Procedures (1/2)

int sumSquare(int x, int y) {
return mult(x,x)+ y;

}

* Something called sumSquare, now
sumSquare is callingmult.

* So there’s avalue in Sra that sumSquare
wants to jump back to, but this will be
overwritten by the call tomult.

* Need to save sumSquare return address
before call tomult.

Nested Procedures (2/2)

* |n general, may need to save some other info in
addition to Sra.

* When a C program is run, there are 3 important
memory areas allocated:

— : Variables declared once per program, cease to
exist only after execution completes - e.g., C globals

— Heap: Variables declared dynamically via malloc

— : Space to be used by procedure during
execution; this is where we can save register values

Optimized Function Convention

To reduce expensive loads and stores from spilling
and restoring registers, MIPS divides registers into
two categories:

1. Preserved across function call
— Caller can rely on values being unchanged
— Sra, $sp, $gp, $fp, “saved registers” $s0- $s7

2. Not preserved across function call
— Caller cannot rely on values being unchanged

— Return value registers $v0,5v1, Argument registers
Sa0-$a3, “temporary registers” St0-5t9

31

Clickers/Peer Instruction

e Which statement is FALSE?

A: MIPS uses jal to invoke a function and
jr to return from a function

B: jalsaves PC+1in Sra

C: The callee can use temporary registers
(Sti) without saving and restoring them

D: The caller can rely on the saved registers
(Ssi) without fear of callee changing them

32

Clickers/Peer Instruction

e Which statement is FALSE?

A: MIPS uses jal to invoke a function and
jr to return from a function

B: jal saves PC+1in Sra

C: The callee can use temporary registers
(Sti) without saving and restoring them

D: The caller can rely on the saved registers
(Ssi) without fear of callee changing them

33

Administrivia

 Hopefully everyone turned-in HWO

e HW1 due 11:59:59pm Sunday 2/8

34

In the News

MIPS for hobbyists

 MIPS Creator CI20 dev
board now available

— A lot like Raspberry Pi but
with MIPS CPU

— Supports Linux and
Android

 1.2GHz 32-bit MIPS with
integrated graphics

http://1liliputing.com/2015/01/mips-creator-ci20-dev-board-

now-available-for-65.html
35

Allocating Space on Stack

C has two storage classes: automatic and static

— Automatic variables are local to function and discarded
when function exits

— Static variables exist across exits from and entries to
procedures

Use stack for automatic (local) variables that don’t
fit in registers

Procedure frame or activation record: segment of
stack with saved registers and local variables

Some MIPS compilers use a frame pointer (Sfp) to
point to first word of frame

36

Stack Before, During, After Call

High address

$fp—

$Sp—

Low address

$fp—

$sp—~

Saved argument
registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and
structures (if any)

b.

$fp—

$sp—

37

Using the Stack (1/2)

* SO0 we have a register $sp which always
points to the last used space in the stack.

* To use stack, we decrement this pointer by
the amount of space we need and then fill
it with info.

* S0, how do we compile this?

int sumSquare(int x, int y) {
return mult(x,x)+ y;

}

Using the Stack (2/2)

* Hand-compile int sumSquare(int x, int y) {
sumSquare: return mult(x,x)+ y; }

addi Ssp,Ssp,-8 # space on stack
y , SW $ra, 4($sp) # save ret addr
push” o Sal, O(Ssp) # save y

add $al,$a0,Szero # mult(x,x)

jal mult # call mult

lw Sal, O(Ssp) # restore y

add SvO0,S$v0,Sal # mult()+y

lw Sra, 4(Ssp) # get ret addr
N , addi sp,Ssp,8 # restore stack
pop jr Sra

mult: ...

Basic Structure of a Function

Prologue

entry label:
addi Ssp,Ssp, -framesize

sw Sra, framesize-4(S$Ssp) # save Sra
save other regs if need be

ra

Body - - - (call other functions...)

memory

Epilogue

restore other regs if need be

lw Sra, framesize-4(Ssp) # restore Sra
addi Ssp,S$sp, framesize
jr Sra

Where is the Stack in Memory?

MIPS convention

Stack starts in high memory and grows down
— Hexadecimal (base 16) : 7fff fffc, .,

MIPS programs (text segment) in low end

— 0040 0000, .,

static data segment (constants and other static
variables) above text for static variables

— MIPS convention global pointer ($gp) points to static

Heap above static for data structures that grow
and shrink ; grows up to high addresses

41

MIPS Memory Allocation

$sp—Tfff fffc,., Stack

!
t

Dynamic data

$gp—-1000 8000,., Static data

1000 0000y,
Text

pc—0040 0000
0

hex

Reserved

42

Register Allocation and Numbering

$zero The constant value O

$vOo-$vl 2-3 Values for results and expression evaluation no
$a0-$a3 4-7 Arguments no
$to-st7 8-15 Temporaries no
$s0-$s7 16-23 Saved yes
$t8-$t9 24-25 More temporaries no
$gp 28 Global pointer yes
$sp 29 Stack pointer yes
§Fp 30 Frame pointer yes
$ra 31 Return address yes

43

And in Conclusion...

Functions called with jal, return with jr Sra.

The stack is your friend: Use it to save anything you
need. Just leave it the way you found it!

Instructions we know so far...

Arithmetic: add, addi, sub, addu, addiu, subu
Memory: lw, sw, 1lb, sb

Decision: beqg, bne, slt, slti, sltu, sltiu
Unconditional Branches (Jumps): j, jal, jr

Registers we know so far

— All of them!

— Sa0-Sa3 for function arguments, Sv0-Sv1 for return values
— Ssp, stack pointer, Sfp frame pointer, Sra return address

Bonus Slides

Recursive Function Factorial

int fact (int n)

{
1f

(n < 1) return (1);

else return (n * fact(n-1));

46

Recursive Function Factorial

Fact: Ll:
adjust stack for 2 items # Else part (n >= 1)
addi S$sp, $sp, -8 # arg. gets (n - 1)
save return address addi $a0, $a0, -1
sw Sra, 4(Ssp) # call fact with (n - 1)
save argument n jal fact
sw $al0, 0($sp) # return from jal: restore n
test for n < 1 1w $a0, 0(Ssp)
slti $t0,$al,1 # restore return address
if n >= 1, go to L1 lw Sra, 4($sp)
beq $t0, $zero, Ll # adjust sp to pop 2 items
Then part (n==1) return 1 addi S$sp, $sp,8
addi $v0, S$zero,1 # return n * fact (n - 1)
pop 2 items off stack mul $vO0,S$al0,$v0
addi $sp, $sp, 8 # return to the caller
return to caller jr Sra
jr Sra

mul is a pseudo instruction
47

