2/10/15

CSelc:
Great Ideas in Computer Architecture
Intro to Assembly Language, MIPS Intro

Instructors:
Krste Asanovic & Vladimir Stojanovic
http://inst.eecs.Berkeley.edu/~cs61c/sp15

Levels of Representation/

Interpretation
High Level Language tem|;= VIK]; .
et

Compiler

sw o $0,4(52) i.e., data or instructions
0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Machine Language
Program (MIPS)

Machine
Interpretation

Hardware Architecture Description
(e.g., block diagrams)

Architecture

Implementation o) .
&
Logic Circuit Description . ®
(Circuit Schematic Diagrams) e )
]

Review: Allocating Space on Stack

* C has two storage classes: automatic and static

— Automatic variables are local to function and discarded
when function exits

— Static variables exist across exits from and entries to
procedures

* Use stack for automatic (local) variables that don’t
fit in registers

* Procedure frame or activation record: segment of
stack with saved registers and local variables

* Some MIPS compilers use a frame pointer ($ fp) to
point to first word of frame

Stack Before, During, After Call

High address
$fp— $fp—
$sp— $sp—
$fp—~1  saved argument
registers (if any)
Saved retum address
Saved saved
registers (if any)
Local arrays and
$sp—> structures (if any)
Low address a b. c.

Using the Stack (1/2)

» So we have a register $sp which always
points to the last used space in the stack.
To use stack, we decrement this pointer by
the amount of space we need and then fill
it with info.

* So, how do we compile this?

int sumSquare(int x, int y) {
return mult(x,x)+ y;

}

Using the Stack (2/2)

* Hand-compile int sumsquare(int x, int y) {
sumSquare: return mult(x,x)+ y; }
addi $sp,$sp,-8 # space on stack
« , SW $ra, 4($sp) # save ret addr
push” o $al, O($sp) # save y
add $al,$a0,$zero # mult(x,x)
jal mult # call mult
lw $al, 0($sp) # restore y
add $v0,$v0,$al # mult()+y
lw $ra, 4($sp) # get ret addr
« , addi $sp,$sp,8 # restore stack
POP”  jr sra
mult: ...




2/10/15

Basic Structure of a Function
Where is the Stack in Memory?

Prologue
entry_ label: * MIPS convention
addi $sp,$sp, -framesize Stack starts in high memory and grows down
sw $ra, framesize-4($sp) # save sra — Hexadecimal (base 16) : 7fff fffc,,
N ex

save other regs if need be
MIPS programs (text segment) in low end

ra

Body--- (call other functions...) — 0040 0000y,
* static data segment (constants and other static
memory variables) above text for static variables
Epilogue — MIPS convention global pointer ($gp) points to static
restore other regs if need be * Heap above static for data structures that grow

lw $ra, framesize-4($sp) # restore $ra
addi $sp,$sp, framesize
jr $ra

and shrink ; grows up to high addresses

MIPS Memory Allocation Register Allocation and Numbering

$sp—~TFFf Fffc,,, Stack
$zero 0 The constant value 0 na.
$v0-$vl 2-3 Values for results and expression evaluation no
T $30-$a3 a-7 Arguments o
. $L0-$t7 8-15 Temporaries no
Dynam'c data $50-$s7 16-23 Saved yes
$t8-$t9 24-25 More temporaries no
$gp—1000 8000, Static data 3P 28 Global pointer yes
$sp 29 Stack pointer yes
1000 OOOUhe,‘ $fp 30 Frame pointer yes
Text $ra 31 Return address yes

pc—0040 0000,.,
0 Reserved

Administrivia

* HW2 due Sunday 2/15

— Can resubmit HW1’ given 80% weight, and
clobber HW1 score

— Autograder results only available after HW2
deadline

* Verbatim and Milleniata launch MDISC 100GB Blu-ray optical media
with >1,000 year lifetime

* “average lifetime of significantly more than 2,000 years with no
more than one failure per 100,000 discs expected, after more than
1,000 years at 250C (770F) and 50 per cent relative humidity.”

12




In

Levels of Representation/
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

High Level Language
Program (e.g., C)

Compiler

Iw  $t0,0(52) Anything can be represented
Assembly Language lw - 5t1,4(52) as a number,
Program (e.g., MIPS) za 2:11) 2:25: i.e., data or instructions

Assembler

0101 10!
Machine
terpretation R )
Hardware Architecture Description |-
(e.g., block diagrams) ALU
Architecture

Implementation

Logic Circuit Description
(Circuit Schematic Diagrams)

2/10/15

First Draft of a Report on the EDVAC
by
John von Neumann
Contract No. W-670-ORD-4926
Between the
United States Army Ordnance Department and the
University of Pennsylvania
Moore School of Electrical Engineering

University of Pennsylvania

June 30, 1945

Big Idea:
Stored-Program
Computer

— Instructions are represented as bit patterns - can
think of these as numbers.

— Therefore, entire programs can be stored in
memory to be read or written just like data.

— Can reprogram quickly (seconds), don’t have to
rewire computer (days)

— Known as the “von Neumann” computers after
widely distributed tech report on EDVAC project

Consequence #1: Everything Addressed

Since all instructions and data are stored in memory,
everything has a memory address: instructions, data
words

— both branches and jumps use these

C pointers are just memory addresses: they can point to
anything in memory

— Unconstrained use of addresses can lead to nasty bugs; up to

you in C; limited in Java by language design

One register keeps address of instruction being
executed: “Program Counter” (PC)

— Basically a pointer to memory: Intel calls it Instruction Pointer (a
better name)

Consequence #2: Binary Compatibility

¢ Programs are distributed in binary form
— Programs bound to specific instruction set
— Different version for Macintoshes and PCs
* New machines want to run old programs (“binaries”) as
well as programs compiled to new instructions
* Leads to “backward-compatible” instruction set evolving
over time
« Selection of Intel 8086 in 1981 for 15t IBM PC is major
reason latest PCs still use 80x86 instruction set (Pentium
4); could still run program from 1981 PC today

Instructions as Numbers (1/2)

Currently all data we work with is in words (32-
bit chunks):

— Each register is a word.

— 1w and sw both access memory one word at a time.
So how do we represent instructions?

— Remember: Computer only understands 1s and Os, so
“add $t0,$0,5$0” is meaningless.

— MIPS/RISC seeks simplicity: since data is in words,
make instructions be fixed-size 32-bit words also

Instructions as Numbers (2/2)

* One word is 32 bits, so divide instruction word
into “fields”.

* Each field tells processor something about
instruction.

* We could define different fields for each
instruction, but MIPS seeks simplicity, so define 3
basic types of instruction formats:

— R-format
— |-format
— J-format




Instruction Formats

* |-format: used for instructions with
immediates, 1w and sw (since offset counts as
an immediate), and branches (beq and bne),
— (but not the shift instructions; later)

* J-format: used for j and jal

* R-format: used for all other instructions

* It will soon become clear why the instructions
have been partitioned in this way.

2/10/15

R-Format Instructions (1/5)

* Define “fields” of the following number of bits
each:6+5+5+5+5+6=32

[ 6 | 5 | s | 5 | 5 [ 6 |
» For simplicity, each field has a name:
I opcode| rs rt | rd |shamt| funct I

* Important: On these slides and in book, each field is
viewed as a 5- or 6-bit unsigned integer, not as part of a
32-bit integer.

— Consequence: 5-bit fields can represent any number 0-31, while
6-bit fields can represent any number 0-63.

R-Format Instructions (2/5)

* What do these field integer values tell us?

— opcode: partially specifies what instruction it is

* Note: This number is equal to 0 for all R-Format
instructions.

— funct: combined with opcode, this number
exactly specifies the instruction

* Question: Why aren’t opcode and functa
single 12-bit field?
— We'll answer this later.

R-Format Instructions (3/5)
* More fields:

— rs (Source Register): usually used to specify
register containing first operand

— rt (Target Register): usually used to specify
register containing second operand (note that
name is misleading)

— rd (Destination Register): usually used to specify
register which will receive result of computation

R-Format Instructions (4/5)
* Notes about register fields:

— Each register field is exactly 5 bits, which means
that it can specify any unsigned integer in the
range 0-31. Each of these fields specifies one of
the 32 registers by number.

— The word “usually” was used because there are
exceptions that we’ll see later. E.g.,
* mult and div have nothing important in the rd field
since the dest registers are hi and 1o
* mfhi and mf1o have nothing important in the rs and
rt fields since the source is determined by the
instruction (see COD)

R-Format Instructions (5/5)
* Final field:
— shamt: This field contains the amount a shift
instruction will shift by. Shifting a 32-bit word
by more than 31 is useless, so this field is only 5
bits (so it can represent the numbers 0-31).
— This field is set to 0 in all but the shift
instructions.
* For a detailed description of field usage for
each instruction, see green insert in COD
(You can bring with you to all exams)




R-Format Example (1/2)
* MIPS Instruction:
add  $8,$9,$10

opcode =0 (look up in table in book)
funct =32 (look up in table in book)
rd = 8 (destination)

rs =9 (first operand)

rt =10 (second operand)

shamt =0 (not a shift)

2/10/15

R-Format Example (2/2)
* MIPS Instruction:
add  $8,$9,510

Decimal number per field representation:

[ o | o J10] 8 | o | 32 |

Binary number per field representation:

{ 000000] 01001 ]01010{ 01000]00000]100000 |

hex representation: T2A 4020, hex
decimal representation: 19,546,144
Called a Machine Language Instruction

ten

I-Format Instructions (1/4)

* What about instructions with immediates?
— 5-bit field only represents numbers up to the value
31: immediates may be much larger than this
— Ideally, MIPS would have only one instruction format
(for simplicity): unfortunately, we need to
compromise
* Define new instruction format that is partially
consistent with R-format:

— First notice that, if instruction has immediate, then it
uses at most 2 registers.

I-Format Instructions (2/4)
* Define “fields” of the following number of bits each:
6+5+5+16 =32 bits

[ e [ 51 5] 16 |
— Again, each field has a name:

lopcodel rs | rt | immediate I

— Key Concept: Only one field is inconsistent with R-format.
Most importantly, opcode is still in same location.

I-Format Instructions (3/4)
* What do these fields mean?

— opcode: same as before except that, since there’s no
funct field, opcode uniquely specifies an instruction in
I-format

— This also answers question of why R-format has two 6-bit
fields to identify instruction instead of a single 12-bit
field: in order to be consistent as possible with other
formats while leaving as much space as possible for
immediate field.

— rs: specifies a register operand (if there is one)

— rt: specifies register which will receive result of
computation (this is why it’s called the target register
“rt”) or other operand for some instructions.

I-Format Instructions (4/4)
* The Immediate Field:
—addi, slti, sltiuy, the immediate is sign-
extended to 32 bits. Thus, it’s treated as a
signed integer.

— 16 bits =» can be used to represent immediate
up to 216 different values

— This is large enough to handle the offset in a
typical 1w or sw, plus a vast majority of values
that will be used in the s1ti instruction.

— Later, we’ll see what to do when a value is too
big for 16 bits




I-Format Example (1/2)
¢ MIPS Instruction:
addi  $21,$22,-50

opcode = 8 (look up in table in book)

rs =22 (register containing operand)

rt =21 (target register)

immediate =-50 (by default, this is decimal in
assembly code)

2/10/15

I-Format Example (2/2)
¢ MIPS Instruction:
addi  $21,$22,-50

Decimal/field representation:

[ 8 [ 22 [ 21 ] -50 |
Binary/field representation:

| 001000]10110[10101 1111111111001110 |

hexadecimal representation: 22D5 FFCE,,,
decimal representation: 584,449,998,

Clicker/Peer Instruction

Which instruction has same representation as integer 35, ?

a) add S0, $0, SO code| rs rt

b) subu $s0,$50,$s0 code| rs | rt

c) lw $0, 0($0) bpcode[ rs [zt | offset

d) addi $0, $0, 35 bpcode[ rs [zt | immediate

e) subu $0, $0, $0 code| rs rt
Registers numbers and names:
0: 80, .. 8: $t0, 9:5t1, ..15: $t7, 16: $s0, 17: $s1, .. 23: $s7

Opcodes and function fields (if necessary)
add: opcode =0, funct = 32
subu: opcode =0, funct =35
addi: opcode =8
1w: opcode = 35

Dealing With Large Immediates

* How do we deal with 32-bit immediates?

— Sometimes want to use immediates > + 215 with
addi, 1w, swand slti

— Bitwise logic operations with 32-bit immediates

* Solution: Don’t mess with instruction
formats, just add a new instruction

* Load Upper Immediate (1ui)
—1lui reg,imm
— Moves 16-bit imm into upper half (bits 16-31) of
reg and zeros the lower half (bits 0-15)

lui Example

* Want: addiu $t0, $t0, 0OxABABCDCD
— This is a pseudo-instruction!
¢ Translates into:

lui $at, OxABAB # upper 16
ori $at,$at,0xCDCD# lower 16
addu $t0,$t0, # move

Only the assembler gets to use $at

* Now we can handle everything with a 16-bit
immediate!

Branching Instructions

* begandbne
— Need to specify a target address if branch taken
— Also specify two registers to compare

* Use I-Format:

lopcodel rs I rt I immediate

— opcode specifies beq (4) vs. bne (5)
— rs and rt specify registers

— How to best use immediate to specify
addresses?




Branching Instruction Usage

* Branches typically used for loops (i f-else,
while, for)
— Loops are generally small (< 50 instructions)
— Function calls and unconditional jumps handled

with jump instructions (J-Format)

* Recall: Instructions stored in a localized area
of memory (Code/Text)
— Largest branch distance limited by size of code

— Address of current instruction stored in the
program counter (PC)

2/10/15

PC-Relative Addressing

* PC-Relative Addressing: Use the immediate
field as a two’s complement offset to PC

— Branches generally change the PC by a small
amount

— Can specify + 215 addresses from the PC

* So just how much of memory can we reach?

Branching Reach

* Recall: MIPS uses 32-bit addresses
— Memory is byte-addressed
* Instructions are word-aligned

— Address is always multiple of 4 (in bytes), meaning it
ends with 0b00 in binary

— Number of bytes to add to the PC will always be a
multiple of 4
* Immediate specifies words instead of bytes
— Can now branch * 215 words
— We can reach 2'¢ instructions = 28 bytes around PC

Branch Calculation

* If we don’t take the branch:
—PC = PC + 4 = nextinstruction
* If we do take the branch:
—PC = (PC+4) + (immediate*4)

* Observations:

— immediate is number of instructions to jump
(remember, specifies words) either forward (+) or
backwards (-)

— Branch from PC+4 for hardware reasons; will be
clear why later in the course

Branch Example (1/2)

Start counting from

¢ MIPS Code: instruction AFTER the
oop: beq  $9,%0, branch
addu $8,$8,510
addiu $9,5%9,-1 21
3 2
End:
* |-Format fields:
opcode =4 (look up on Green Sheet)
rs=9 (first operand)
rt=0 (second operand)

immediate =3

Branch Example (2/2)

¢ MIPS Code:
Loop: beq $9,%0,
addu $8,5$8,510
addiu $9,5%9,-1

J
End:
Field representation (decimal): 0
L s [ o[ o | 3 |
31 Field representation (binary): 0

[000100]01001]00000] 000000000000001T |

2




Questions on PC-addressing

* Does the value in branch immediate field
change if we move the code?
— If moving individual lines of code, then yes
— If moving all of code, then no

* What do we do if destination is > 215
instructions away from branch?
— Other instructions save us

— beqg $s0,$0, bne $s0,50,
# next instr > j
next: # next instr

2/10/15

J-Format Instructions (1/4)

* For branches, we assumed that we won’t
want to branch too far, so we can specify a
change in the PC

For general jJumps (j and jal), we may jump

to anywhere in memory

— Ideally, we would specify a 32-bit memory address
to jump to

— Unfortunately, we can’t fit both a 6-bit opcode
and a 32-bit address into a single 32-bit word

J-Format Instructions (2/4)

3 Define two “fields” of these bit widths:

[ 6 | 26

3-1As usual, each field has a name:

lopcodel target address

* Key Concepts:
— Keep opcode field identical to R-Format and
I-Format for consistency

— Collapse all other fields to make room for large
target address

J-Format Instructions (3/4)

* We can specify 22° addresses

— Still going to word-aligned instructions, so add 0000
as last two bits (multiply by 4)

— This brings us to 28 bits of a 32-bit address
Take the 4 highest order bits from the PC

— Cannot reach everywhere, but adequate almost all of
the time, since programs aren’t that long

— Only problematic if code straddles a 256MB boundary

* If necessary, use 2 jumps or jr (R-Format)
instead

J-Format Instructions (4/4)

e Jump instruction:
— New PC = { (PC+4)[31..28], target address, 00 }
* Notes:

—{,, } means concatenation
{4 bits, 26 bits, 2 bits } = 32 bit address

* Book uses | | instead
— Array indexing: [31..28] means highest 4 bits
— For hardware reasons, use PC+4 instead of PC

Assembler Pseudo-Instructions

¢ Certain C statements are implemented
unintuitively in MIPS
— e.g. assignment (a=Db) via add zero

* MIPS has a set of “pseudo-instructions” to make
programming easier

— More intuitive to read, but get translated into actual
instructions later

e Example:

move dst, src translated into
addi dst,src,0




Assembler Pseudo-Instructions

List of pseudo-instructions:
http://en.wikipedia.org/wiki/MIPS_architecture#Pseudo_instructions

— List also includes instruction translation
¢ Load Address (1a)
— la dst, label
— Loads address of specified label into dst
¢ Load Immediate (1i)
— 11 dst,imm
— Loads 32-bit immediate into dst
* MARS has additional pseudo-instructions
— See Help (F1) for full list

2/10/15

Assembler Register

* Problem:
— When breaking up a pseudo-instruction, the
assembler may need to use an extra register
— If it uses a regular register, it’ll overwrite
whatever the program has put into it
* Solution:

— Reserve a register ($1 or Sat for “assembler
temporary”) that assembler will use to break up
pseudo-instructions

— Since the assembler may use this at any time, it’s
not safe to code with it

MAL vs. TAL

¢ True Assembly Language (TAL)

— The instructions a computer understands and
executes

* MIPS Assembly Language (MAL)

— Instructions the assembly programmer can use
(includes pseudo-instructions)

— Each MAL instruction becomes 1 or more TAL
instruction

¢ TAL € MAL

Summary

* |-Format: instructions with immediates, 1w/
sw (offset is immediate), and beg/bne
— But not the shift instructions
— Branches use PC-relative addressing

I:lopcodel rs I rt

immediate I

* J-Format: j and jal (butnot jr)
— Jumps use absolute addressing
J:lopcodel

target address I
* R-Format: all other instructions
R:lopcodel rs I rt I rd Ishamtl functl




