CS 61C: Great Ideas in Computer
Architecture (Machine Structures)
Pipelining

Instructors:
Krste Asanovic & Vladimir Stojanovic
http://inst.eecs.berkeley.edu/~cs61c/



Review: Single-Cycle Processor

* Five steps to design a processor:
1.

Analyze instruction set 2
datapath requirements

. Select set of datapath

components & establish
clock methodology

. Assemble datapath meeting

the requirements

Processor

Control

Memory

Input

Output

. Analyze implementation of each instruction to determine

setting of control points that effects the register transfer.

. Assemble the control logic

* Formulate Logic Equations
* Design Circuits




Review: A Single-Cycle Datapath
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Single Cycle Performance
* Assume time for actions are
— 100ps for register read or write; 200ps for other events

* Clock period is?

Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

SW 200ps 100 ps 200ps 200ps 700ps

R-format | 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

* Clock rate (cycles/second = Hz) = 1/Period (seconds/cycle)
* What can we do to improve clock rate?

* Will this improve performance as well?
Want increased clock rate to mean faster programs



Single Cycle Performance

e Assume time for actions are

— 100ps for register read or write; 200ps for other events

* Clock period is?

Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

SW 200ps 100 ps 200ps 200ps 700ps

R-format | 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

* What can we do to improve clock rate?

* Will this improve performance as well?
Want increased clock rate to mean faster programs




Gotta Do Laundry
* Ann, Brian, Cathy, Dave

each have one load of clothes to @&@@

wash, dry, fold, and put away
— Washer takes 30 minutes '

— Dryer takes 30 minutes

()

— “Folder” takes 30 minutes

— “Stasher” takes 30 minutes to put

clothes into drawers ﬁ



Sequential Laundry
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Pipelined Laundry
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* Pipelined laundry takes

3.5 hours for 4 loads!



x 0 O —

S~ ®© QS0

Pipelining Lessons (1/2)
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Pipelining doesn’t help latency
of single task, it helps
throughput of entire workload

Vultiple tasks operating
simultaneously using different
resources

Potential speedup = Number
pipe stages

Time to “fill” pipeline and time
to “drain” it reduces speedup:
2.3X v. 4X in this example
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Plpellnlng Lessons (2/2)

6 PM

' Time

1 | I
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* Suppose new Washer
takes 20 minutes, new
Stasher takes 20
minutes. How much
faster is pipeline?

* Pipeline rate limited by

slowest pipeline stage

* Unbalanced lengths of

pipe stages reduces
speedup



Steps in Executing MIPS

1) IFtch: Instruction Fetch, Increment PC
2) Dcd: Instruction Decode, Read Registers

3) Exec:
Mem-ref: Calculate Address
Arith-log: Perform Operation

4) Mem:
Load: Read Data from Memory
Store: Write Data to Memory

5) WB: Write Data Back to Register




Single Cycle Datapath
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Pipeline registers
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* Need registers between stages
— To hold information produced in previous cycle



More Detailed Pipeline
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IF for Load, Store, ...
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ID for Load, Store, ...
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EX for Load
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MEM for Load
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WB for Load — Oops!

rite back
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Corrected Datapath for Load
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Pipelined Execution Representation
_Time
IF_[ip [ex [mem]ws
IF_[ip [ex [mem]ws
IF_ip Jex [MEm]wB
IF_Jip [ex [mem]ws
IF_Jip Jex [mEm] wB

IF i [ex [veEm] wB

* Every instruction must take same number of
steps, so some stages will idle

— e.g. MEM stage for any arithmetic instruction

21



Graphical Pipeline Diagrams
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* Use datapath figure below to represent pipeline:
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Graphical Pipeline Representation

* RegFile: left half is write, right half is read
_ Time (_cloc_k cy_cles_)
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Pipelining Performance (1/3)

* Use T, (“time between completion of

instructions”) to measure speedup
Tc,single—cycle

Number of stages

— Equality only achieved if stages are balanced
(i.e. take the same amount of time)

* |f not balanced, speedup is reduced

— Tc,pipelined =

* Speedup due to increased throughput
— Latency for each instruction does not decrease

24



Pipelining Performance (2/3)

* Assume time for stages is

— 100ps for register read or write

— 200ps for other stages
Instr Instr Register | ALUop |Memory |Register | Total
fetch read access write time
W 200ps  |100ps |200ps | 200ps | 100 ps -
SW 200ps 100 ps 200ps 200ps 700ps
R-format | 200ps 100 ps 200ps 100 ps 600ps
beq 200ps 100 ps 200ps 500ps

 What is pipelined clock rate?

— Compare pipelined datapath with single-cycle datapath
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Pipelining Performance (3/3)

Single-cycle
T.=800 ps
f=1.25GHz

Pipelined
T.=200 ps
f=5GHz

Program
execution
order

(in instructions)

Time

lw $1, 100($0)
lw $2, 200($0)

lw $3, 300($0)

Program
execution Ti
order

(in instructions)

lw $1, 100($0)
lw $2, 200($0)

lw $3, 300($0)

200 ps 200 ps 200 ps 200 ps 200 ps
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Instruction Dat
fetch Reg( ALU accae:s Reg
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Instruction
800 ps fetch
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fetch Reg( ALU access Reg
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Clicker/Peer Instruction

Which statement is false?

* A: Pipe
* B: Pipe
* C: Pipe
* D: Pipe

ining increases instruction throughput
ining increases instruction latency
ining increases clock frequency

ining decreases number of components

27



Administrivia

* Project 1-2 due date now 11:59PM Saturday 3/7
e HW 4 due date now 11:59PM Tuesday 3/10

 10% Extra Credit for each finished by original
deadline

28



Pipelining Hazards

A hazard is a situation that prevents starting the
next instruction in the next clock cycle
1) Structural hazard

— A required resource is busy
(e.g. needed in multiple stages)

2) Data hazard

— Data dependency between instructions

— Need to wait for previous instruction to
complete its data read/write

3) Control hazard
— Flow of execution depends on previous instruction

29



1. Structural Hazards

* Conflict for use of a resource
* MIPS pipeline with a single memory?

— Load/Store requires memory access for data
— Instruction fetch would have to stall for that cycle

e Causes a pipeline “bubble”

* Hence, pipelined datapaths require separate
instruction/data memories

— Separate L1 1S and L1 DS take care of this

30



Structural Hazard #1: Single Memory

Time (clock cycles) X

Trying to read
same
memory
twice in same
lock cycle
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Structural Hazard #2: Registers (1/2)
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Structural Hazard #2: Registers (2/2)

e Two different solutions have been used:

1) Split RegFile access in two: Write during 1t half and
Read during 2"9 half of each clock cycle

e Possible because RegFile access is VERY fast
(takes less than half the time of ALU stage)

2) Build RegFile with independent read and write ports

* Conclusion: Read and Write to registers during
same clock cycle is okay

Structural hazards can always be removed by
adding hardware resources
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2. Data Hazards (1/2)

* Consider the following sequence of

Instructions:

add $tO,
sub $t4,
and Stbh,
or St7,
Xxor S$t9,

stl,
St0,
Sto,
St0,
Sto,

St2
St3
Sto
St 8
St10

34
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2. Data Hazards (2/2)

Data-flow backwards in time are hazards
Time (clock cycles)

IF_: IDIRF.
add $t0,$t1,$t2| 15 [F|Ree[:

sub $t4,$t0,6t3 |15 [ree’

and $t5,5t0,6t6 | |1 [H[ree]’ {Reg

or $t7,5t0,5t8

xor $t9,5t0,$t10 °




Data Hazard Solution: Forwarding

e Forward result as soon as it is available
— OK that it’s not stored in RegFile yet

IF ID/RF: NEXi MEM: WB
: F N i Nk

add $t0,$t1,t2| 15 [{Ree[: ¥ Jouf ps [-{Rs|:

sub $t4,5t0,6t3 15 [Hree]’

and $t5,5t0,$t6 = |

or $t7,5t0,$t8

xor $t9,5t0,$t10

36



e Whatc

Datapath for Forwarding (1/2)

nanges need to be made here?
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Datapath for Forwarding (2/2)

 Handled by forwarding unit

i

Registers

ID/EX

EX/MEM

ForwardA

N

MEM/WB

ALU—>

Data

memory

ForwardB

EX/MEM.RegisterRd

Yy
(xe=s )

MEM/WB.RegisterRd
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Data Hazard: Loads (1/4)

e Recall: Dataflow backwards in time are
hazards

IF

lw $t0,0($t1)| 1

sub $t3,5t0,$t2 |

e Can’t solve all cases with forwarding

— Must stall instruction dependent on load, then
forward (more hardware)

39



Data Hazard: Loads (2/4)

e Hardware stalls pipeline

— Called “hardware interlock”
i IF_{ID/RFi NEX i MEM: WB

Schematically, this is what
we want, but in reality stalls
done “horizontally”

Reg | :

Iw $t0, 0($t1) [
sub $t3,$t0,5t2

and $t5,$t0,$t4

Howto i\
or $t7,5t0,$t6 istanjust 4

I

118

ipart of
‘pipeline?




Data Hazard: Loads (3/4)

e Stalled instruction converted to “bubble”, acts like nop

Iw $t0, 0($t1)

sub ; t2§

sub $t3,5t0,$t2
and $t5,$t0,$t4

mat

Reg

A DS

| 18

Firét two bipe

or $t7,$t0,$tstages stall by

: ble

o Reg [

ERegi

le

repeating stage

one cycle later

‘bub } bub I bub
lble

15 |

 Ipg
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Data Hazard: Loads (4/4)

* Slot after a load is called a load delay slot

— If that instruction uses the result of the load, then
the hardware interlock will stall it for one cycle

— Letting the hardware stall the instruction in the
delay slot is equivalent to putting an explicit nop
in the slot (except the latter uses more code
space)

* ldea: Let the compiler put an unrelated
instruction in that slot = no stall!
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Code Scheduling to Avoid Stalls

e Reorder code to avoid use of load result in the
next instruction!

e MIPS code for D=A+B; E=A+C;

# Method 2:
lw $tl, 0(StO0)

# Method 1:

1w Stl, 0(st0)

1w 4 (St0)
Stalll————

add $t3, Stl,

sw  $St3, 12($t0)
Stalll————— 8(5¢0)

add St5, Stl,

sw $t5, 16($t0)

WI

13 cycles

Y

sw $t5, 16($t0)

\ 4
11 cycles

43



In The News: SanDisk announces
%> PetaByte flash drive

 512TB of flash memory in 3U of rack space
— That’s 2749 bytes

e 780,000 1/0/second
e 7 GB/s sustained bandwidth




3. Control Hazards

* Branch determines flow of control

— Fetching next instruction depends on branch
outcome

— Pipeline can’t always fetch correct instruction
* Still working on ID stage of branch

« BEQ, BNE in MIPS pipeline
* Simple solution Option 1: Stall on every
branch until branch condition resolved

— Would add 2 bubbles/clock cycles for every
Branch! (~ 20% of instructions executed)



Stall => 2 Bubbles/Clocks
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Control Hazard: Branching

* Optimization #1.:
— Insert special branch comparator in Stage 2

— As soon as instruction is decoded (Opcode
identifies it as a branch), immediately make a
decision and set the new value of the PC

— Benefit: since branch is complete in Stage 2, only
one unnecessary instruction is fetched, so only
one no-op is needed

— Side Note: means that branches are idle in Stages
3,4and 5

Question: What’s an efficient way to implement the equality comparison?



One Clock Cycle Stall

Time (clock cycles) X
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Control Hazards: Branching

* Option 2: Predict outcome of a branch, fix up
if guess wrong

— Must cancel all instructions in pipeline that
depended on guess that was wrong

— This is called “flushing” the pipeline

* Simplest hardware if we predict that all
branches are NOT taken

— Why?



Control Hazards: Branching

* Option #3: Redefine branches

— Old definition: if we take the branch, none of the
instructions after the branch get executed by accident

— New definition: whether or not we take the branch,
the single instruction immediately following the
branch gets executed (the branch-delay slot)

* Delayed Branch means we always execute inst
after branch

* This optimization is used with MIPS



Example: Nondelayed vs. Delayed Branch

Nondelayed Branch

or S8, $9,
add $1, $2,

sub $4, S5,

' beq $1, $4,

xor $10, S$1,

Exit:

Delayed Branch

$10 add $1, $2,83

$3 sub $4, $5, $6
S6 beq $1, $4, Exit

Exit or §$8, $9, $10
$11 xor $10, S$1, S11

Exit:



Control Hazards: Branching

* Notes on Branch-Delay Slot

— Worst-Case Scenario: put a nop in the branch-
delay slot

— Better Case: place some instruction preceding the
branch in the branch-delay slot—as long as the
changed doesn’t affect the logic of program

* Re-ordering instructions is common way to speed up
programs

e Compiler usually finds such an instruction 50% of time
* Jumps also have a delay slot ...



Greater Instruction-Level Parallelism (ILP)

Deeper pipeline (5 => 10 => 15 stages)
— Less work per stage = shorter clock cycle
Multiple issue “superscalar”
— Replicate pipeline stages = multiple pipelines
— Start multiple instructions per clock cycle
— CPI < 1, so use Instructions Per Cycle (IPC)
— E.g., 4GHz 4-way multiple-issue

e 16 BIPS, peak CPI =0.25, peak IPC=4
— But dependencies reduce this in practice
“Out-of-Order” execution

— Reorder instructions dynamically in hardware to reduce
impact of hazards

Take CS152 next to learn about these techniques!
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In Conclusion

Pipelining increases throughput by overlapping
execution of multiple instructions in different

pipestages
Pipestages should be balanced for highest clock rate
Three types of pipeline hazard limit performance

— Structural (always fixable with more hardware)

— Data (use interlocks or bypassing to resolve)
— Control (reduce impact with branch prediction or branch
delay slots)



