CS 61C: Great Ideas in Computer
Architecture (Machine Structures)
Pipelining

Instructors:
Krste Asanovic & Vladimir Stojanovic
http://inst.eecs.berkeley.edu/~cs61c/

Review: Single-Cycle Processor

* Five steps to design a processor:
1.

Analyze instruction set 2
datapath requirements

. Select set of datapath

components & establish
clock methodology

. Assemble datapath meeting

the requirements

Processor

Control

Memory

Input

Output

. Analyze implementation of each instruction to determine

setting of control points that effects the register transfer.

. Assemble the control logic

* Formulate Logic Equations
* Design Circuits

Review: A Single-Cycle Datapath

Inst ~— T T » Instruction<31:0>
Memory it > |=
T ST I
e 51719
Rs Rt Rd Imml6
nPC sel |RegDst
L Rd Rt Equal ALUctr MemtoReg
El_(h I MemWr
) RegWr Rs Rt
B e L
2N = busw| RW Ra Rb| busA 2 |
:7 0 . ’ 1»] 32 N
E—PS || |32 RegFile busB PN 9 7 o
> 4 /\ 7 "10 >
g A clk! 32 . : |
= >% / | = 32 WrEn Adr
LIz Ik imm16 211 J Daarl I
5 > C mmilo—-/ ~—/— g 7 dala In Data :/
= 16 & 32 Memory
il clk >
mmm16

ExtOp ALUSrc

Single Cycle Performance
* Assume time for actions are
— 100ps for register read or write; 200ps for other events

* Clock period is?

Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

SW 200ps 100 ps 200ps 200ps 700ps

R-format | 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

* Clock rate (cycles/second = Hz) = 1/Period (seconds/cycle)
* What can we do to improve clock rate?

* Will this improve performance as well?
Want increased clock rate to mean faster programs

Single Cycle Performance

e Assume time for actions are

— 100ps for register read or write; 200ps for other events

* Clock period is?

Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

SW 200ps 100 ps 200ps 200ps 700ps

R-format | 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

* What can we do to improve clock rate?

* Will this improve performance as well?
Want increased clock rate to mean faster programs

Gotta Do Laundry
* Ann, Brian, Cathy, Dave

each have one load of clothes to @&@@

wash, dry, fold, and put away
— Washer takes 30 minutes '

— Dryer takes 30 minutes

()

— “Folder” takes 30 minutes

— “Stasher” takes 30 minutes to put

clothes into drawers ﬁ

Sequential Laundry
GIPM 7 8 9 10 11 12 1 ZAM

T P e T P SR I

T 303030 30 30379 30'30°'3030 30303030 3030
£ . ime
1O@9) A
(| B R oo
5 g
0|8 &
rw
d
e
r e Sequential laundry takes

8 hours for 4 loads

x 0 O —

S~ ®© Q=0

'O

Pipelined Laundry

6 PM 7 8

9

10

11

12

1 2AM

SO A
S WA
&

{7
) =2 d

A
A

| |
3030 30 30 30 30 30

Time

* Pipelined laundry takes

3.5 hours for 4 loads!

x 0 O —

S~ ®© QS0

Pipelining Lessons (1/2)

6PM 7 8 9

3030 30 30 30 30

o1 S

B!

O

= A
S

85

Time

30

Pipelining doesn’t help latency
of single task, it helps
throughput of entire workload

Vultiple tasks operating
simultaneously using different
resources

Potential speedup = Number
pipe stages

Time to “fill” pipeline and time
to “drain” it reduces speedup:
2.3X v. 4X in this example

X~ 0 O —

S~ ®© Qs 0O

Plpellnlng Lessons (2/2)

6 PM

' Time

1 | I
3030 30 30 30 30 30

* Suppose new Washer
takes 20 minutes, new
Stasher takes 20
minutes. How much
faster is pipeline?

* Pipeline rate limited by

slowest pipeline stage

* Unbalanced lengths of

pipe stages reduces
speedup

Steps in Executing MIPS

1) IFtch: Instruction Fetch, Increment PC
2) Dcd: Instruction Decode, Read Registers

3) Exec:
Mem-ref: Calculate Address
Arith-log: Perform Operation

4) Mem:
Load: Read Data from Memory
Store: Write Data to Memory

5) WB: Write Data Back to Register

Single Cycle Datapath

P
<

Register Read

&
C rd _|C|_,J >
» 46 G) C
> D > 8 o
25 [¢ ALU 5 O
&) E > > O o
= =
_|+4 imm])
\ » ¢ > ¢ — = =
1. Instruction 2 Decode/ 3. Execute 4. Memory 5. Write
Fetch | | Back

Pipeline registers

d \ 4 g)
"
> 8_3 > .§ g rs Y ‘% >
SE Fr 8 >ALU™ &8 7
g2 [: 8§
2 E | =
|+4 imn | .
) : > I: >l o :I: %I% —
1. Instruction 2 Decode/ 3. Execute 4. Memory 9. Write
Fetch Register Read Back

* Need registers between stages
— To hold information produced in previous cycle

More Detailed Pipeline

Y

>Add

IF/ID

ID/EX

Address

Instruction
memory

Instruction

Shift
left 2

A

Read
register

Read

1

register 2
Registers pgoaq

Write
register
Write
data

Read
data 1

data 2

\

Add Add

ﬂ

Sign-

extend

EX/MEM

Zero
ALU A1y

result

/

Address

Write
data

Data
memory

Read
data

MEM/WB

IF for Load, Store, ...

Iw

Instruction fetch

\ /

>Add

4 —>

Address

Instruction
memory

IF/ID

Y

ID/EX

Instruction

Shift
left 2

o | Read
" | register 1 Read
data 1
Read
register 2
Registers Rgaq
Write data 2
register
. Write
data
16\ Sign-

AY

extend

32

Add
result

EX/MEM
——
@ Address
_ | Write
7| data

Data
memory

Read
data

MEM/WB

Y

ID for Load, Store, ...

Iw

Instruction decode

Add
4 —

IF/ID

ID/EX

Address

Instruction
memory

Y

Instruction

Shift
left 2

Read
" | register 1 Read
data 1
Read
register 2
Registers poog
Write data 2
register
Write
data
16\ _ | Sign-

v 7| extend

32

Add
result

MEM/WB

EX/MEM
=

o Read

> ~@—» Address data
Data
memory

_ _ | write

o " | data

EX for Load

Read
data

Data
emory

MEM/WB

| " |
| Execution |
IF/ID ID/EX EX/MEM
——
Add » >
4 dgAdd
Shift result
left 2
PC Address c Read Read
2 register 1 ea
£ data 1
= Read > .
Instruction IS register 2
memory i B Write ReglstersRead > Address
" | register data 2
Write m
data
Write
> data
1 "
(\5 _ [Sign-]

v | extend

“x c =2°

MEM for Load

Y

Add

Address

Instruction
memory

Y

IF/ID

ID/EX

Instruction

Read
register

Read
register

Write
register
Write
data

1 Read
data 1

2

Registers pgag
data 2

Shift
left 2

Y

Sign-
extend

g Add
result

| " |

! Memory !
EX/MEM MEM/WB

—
Read
> @ Address data []
Data
memory

o Write
- 7| data

Y

WB for Load — Oops!

rite back
IF/ID ID/EX EX/MEM MEM/WB
Add >
4= A i
Shift
left 2
c
PC Address % Read
E register 1 Read
‘é data 1
= Read > —
Instruction . ister 2 Read
memory v /) Registers Reaq > —@—>| Address data [
< Write data 2
regispér Data
\ rite memory
data
o | Write
o " | data
16 : >
X . [Sign- 32 >
T 7| extend
ister

number!

Corrected Datapath for Load

Address

Instruction

memory

IF/ID

ID/EX

o | Read
register 1

Instruction

Read
register 2

Write
register
Write
data

!

Registers po,q

Read

Shift
left 2

data 1

data 2

Sign-
extend

EX/MEM
=
—@—»| Address
Data
memory
o Write
o data

Read
data

MEM/WB

Y

Pipelined Execution Representation
_Time
IF_[ip [ex [mem]ws
IF_[ip [ex [mem]ws
IF_ip Jex [MEm]wB
IF_Jip [ex [mem]ws
IF_Jip Jex [mEm] wB

IF i [ex [veEm] wB

* Every instruction must take same number of
steps, so some stages will idle

— e.g. MEM stage for any arithmetic instruction

21

Graphical Pipeline Diagrams

S > rd . —
o) O J =5 +Register >
100 O 'S N . > T O —
S € I File -
s 0 N © £
| n £ | oo
k= . — =
é A+4 imm L n
R e ety B
1. Instruction 2. Decode/ T3.Execute T 4. Memory T 5. Write
Fetch Register Read Back

* Use datapath figure below to represent pipeline:
IF_[ID [EX [Mem]wB

1 1

15 |i|Reg [T O8] | Reg

22

Graphical Pipeline Representation

* RegFile: left half is write, right half is read
_ Time (_cloc_k cy_cles_)

15 |;

I
n
s |Load
t
r

Add

Store

- D=0

Pipelining Performance (1/3)

* Use T, (“time between completion of

instructions”) to measure speedup
Tc,single—cycle

Number of stages

— Equality only achieved if stages are balanced
(i.e. take the same amount of time)

* |f not balanced, speedup is reduced

— Tc,pipelined =

* Speedup due to increased throughput
— Latency for each instruction does not decrease

24

Pipelining Performance (2/3)

* Assume time for stages is

— 100ps for register read or write

— 200ps for other stages
Instr Instr Register | ALUop |Memory |Register | Total
fetch read access write time
W 200ps |100ps |200ps | 200ps | 100 ps -
SW 200ps 100 ps 200ps 200ps 700ps
R-format | 200ps 100 ps 200ps 100 ps 600ps
beq 200ps 100 ps 200ps 500ps

 What is pipelined clock rate?

— Compare pipelined datapath with single-cycle datapath

25

Pipelining Performance (3/3)

Single-cycle
T.=800 ps
f=1.25GHz

Pipelined
T.=200 ps
f=5GHz

Program
execution
order

(in instructions)

Time

lw $1, 100($0)
lw $2, 200($0)

lw $3, 300($0)

Program
execution Ti
order

(in instructions)

lw $1, 100($0)
lw $2, 200($0)

lw $3, 300($0)

200 ps 200 ps 200 ps 200 ps 200 ps

200 400 600 800 1000 1200 1400 1600 1800
Instruction Dat
fetch Reg(ALU accae:s Reg
800 ps " reg| A | 02 e
Instruction
800 ps fetch
800 ps
200 400 600 800 1000 1200 1400
Instruction Data
fetch Reg(ALU access Reg
200ps | "o | |Fea| AU | aoces |Re0
200ps | [reo| Aw | 2, |reg

26

Clicker/Peer Instruction

Which statement is false?

* A: Pipe
* B: Pipe
* C: Pipe
* D: Pipe

ining increases instruction throughput
ining increases instruction latency
ining increases clock frequency

ining decreases number of components

27

Administrivia

* Project 1-2 due date now 11:59PM Saturday 3/7
e HW 4 due date now 11:59PM Tuesday 3/10

 10% Extra Credit for each finished by original
deadline

28

Pipelining Hazards

A hazard is a situation that prevents starting the
next instruction in the next clock cycle
1) Structural hazard

— A required resource is busy
(e.g. needed in multiple stages)

2) Data hazard

— Data dependency between instructions

— Need to wait for previous instruction to
complete its data read/write

3) Control hazard
— Flow of execution depends on previous instruction

29

1. Structural Hazards

* Conflict for use of a resource
* MIPS pipeline with a single memory?

— Load/Store requires memory access for data
— Instruction fetch would have to stall for that cycle

e Causes a pipeline “bubble”

* Hence, pipelined datapaths require separate
instruction/data memories

— Separate L1 1S and L1 DS take care of this

30

Structural Hazard #1: Single Memory

Time (clock cycles) X

Trying to read
same
memory
twice in same
lock cycle

15 |;

Load

=) 5 =

Instr 1

Instr 2

Instr 3

- 0D0o=0

Reg

>
=
™=
R
-
=5

YInstr 4

31

Structural Hazard #2: Registers (1/2)

Time (_cloc_k cy_cles_) .
I . : : : : : : :
n I$: 5
S |Load : - Can we read
t and write to
r |instr 1 : registers

: Rimultanéously

cr) Instr 2 |
d |Instr 3 HReg |
e
" VInstr 4 L2

32

Structural Hazard #2: Registers (2/2)

e Two different solutions have been used:

1) Split RegFile access in two: Write during 1t half and
Read during 2"9 half of each clock cycle

e Possible because RegFile access is VERY fast
(takes less than half the time of ALU stage)

2) Build RegFile with independent read and write ports

* Conclusion: Read and Write to registers during
same clock cycle is okay

Structural hazards can always be removed by
adding hardware resources

33

2. Data Hazards (1/2)

* Consider the following sequence of

Instructions:

add $tO,
sub $t4,
and Stbh,
or St7,
Xxor S$t9,

stl,
St0,
Sto,
St0,
Sto,

St2
St3
Sto
St 8
St10

34

S5 —

- D0Dao=0

2. Data Hazards (2/2)

Data-flow backwards in time are hazards
Time (clock cycles)

IF_: IDIRF.
add $t0,$t1,$t2| 15 [F|Ree[:

sub $t4,$t0,6t3 |15 [ree’

and $t5,5t0,6t6 | |1 [H[ree]’ {Reg

or $t7,5t0,5t8

xor $t9,5t0,$t10 °

Data Hazard Solution: Forwarding

e Forward result as soon as it is available
— OK that it’s not stored in RegFile yet

IF ID/RF: NEXi MEM: WB
: F N i Nk

add $t0,$t1,t2| 15 [{Ree[: ¥ Jouf ps [-{Rs|:

sub $t4,5t0,6t3 15 [Hree]’

and $t5,5t0,$t6 = |

or $t7,5t0,$t8

xor $t9,5t0,$t10

36

e Whatc

Datapath for Forwarding (1/2)

nanges need to be made here?

Y

>Add

4 —

IF/ID

ID/EX

Address

Instruction
memory

Instruction

!

Read
register 1

Read
register 2
Registers

Write
register
Write
data

Read
data 1

Read
data 2

Add Add

EX/MEM

extend

Sign-

MEM/WB

L

Shift result
left 2
Zero
ALU AU
> = result

/

Address
Data
memory
Write
data

Read
data

Y

37

Datapath for Forwarding (2/2)

 Handled by forwarding unit

i

Registers

ID/EX

EX/MEM

ForwardA

N

MEM/WB

ALU—>

Data

memory

ForwardB

EX/MEM.RegisterRd

Yy
(xe=s)

MEM/WB.RegisterRd

38

Data Hazard: Loads (1/4)

e Recall: Dataflow backwards in time are
hazards

IF

lw $t0,0($t1)| 1

sub $t3,5t0,$t2 |

e Can’t solve all cases with forwarding

— Must stall instruction dependent on load, then
forward (more hardware)

39

Data Hazard: Loads (2/4)

e Hardware stalls pipeline

— Called “hardware interlock”
i IF_{ID/RFi NEX i MEM: WB

Schematically, this is what
we want, but in reality stalls
done “horizontally”

Reg | :

Iw $t0, 0($t1) [
sub $t3,$t0,5t2

and $t5,$t0,$t4

Howto i\
or $t7,5t0,$t6 istanjust 4

I

118

ipart of
‘pipeline?

Data Hazard: Loads (3/4)

e Stalled instruction converted to “bubble”, acts like nop

Iw $t0, 0($t1)

sub ; t2§

sub $t3,5t0,$t2
and $t5,$t0,$t4

mat

Reg

A DS

| 18

Firét two bipe

or $t7,$t0,$tstages stall by

: ble

o Reg [

ERegi

le

repeating stage

one cycle later

‘bub } bub I bub
lble

15 |

 Ipg

41

Data Hazard: Loads (4/4)

* Slot after a load is called a load delay slot

— If that instruction uses the result of the load, then
the hardware interlock will stall it for one cycle

— Letting the hardware stall the instruction in the
delay slot is equivalent to putting an explicit nop
in the slot (except the latter uses more code
space)

* ldea: Let the compiler put an unrelated
instruction in that slot = no stall!

42

Code Scheduling to Avoid Stalls

e Reorder code to avoid use of load result in the
next instruction!

e MIPS code for D=A+B; E=A+C;

Method 2:
lw $tl, 0(StO0)

Method 1:

1w Stl, 0(st0)

1w 4 (St0)
Stalll————

add $t3, Stl,

sw $St3, 12($t0)
Stalll————— 8(5¢0)

add St5, Stl,

sw $t5, 16($t0)

WI

13 cycles

Y

sw $t5, 16($t0)

\ 4
11 cycles

43

In The News: SanDisk announces
%> PetaByte flash drive

 512TB of flash memory in 3U of rack space
— That’s 2749 bytes

e 780,000 1/0/second
e 7 GB/s sustained bandwidth

3. Control Hazards

* Branch determines flow of control

— Fetching next instruction depends on branch
outcome

— Pipeline can’t always fetch correct instruction
* Still working on ID stage of branch

« BEQ, BNE in MIPS pipeline
* Simple solution Option 1: Stall on every
branch until branch condition resolved

— Would add 2 bubbles/clock cycles for every
Branch! (~ 20% of instructions executed)

Stall => 2 Bubbles/Clocks

Time (clock cycles)

15 |:

beq

Y e () D

Instr 1

Instr 2

Instr 3

- 0Dao=0

YInstr 4

Where do wé do gthe é:omic:areg forgthe gbrangch?

Reg

Control Hazard: Branching

* Optimization #1.:
— Insert special branch comparator in Stage 2

— As soon as instruction is decoded (Opcode
identifies it as a branch), immediately make a
decision and set the new value of the PC

— Benefit: since branch is complete in Stage 2, only
one unnecessary instruction is fetched, so only
one no-op is needed

— Side Note: means that branches are idle in Stages
3,4and 5

Question: What’s an efficient way to implement the equality comparison?

One Clock Cycle Stall

Time (clock cycles) X

15 |;

beq :
Instr 1 ‘$K‘Rg

Instr 2

Instr3 " FRe[B30 fRe];
‘Instr4 = | T g-@J ;

Branch corinpairato;' moivedito Ijecoae sitage.

sy () D
MVL

- D0D0o=0

Control Hazards: Branching

* Option 2: Predict outcome of a branch, fix up
if guess wrong

— Must cancel all instructions in pipeline that
depended on guess that was wrong

— This is called “flushing” the pipeline

* Simplest hardware if we predict that all
branches are NOT taken

— Why?

Control Hazards: Branching

* Option #3: Redefine branches

— Old definition: if we take the branch, none of the
instructions after the branch get executed by accident

— New definition: whether or not we take the branch,
the single instruction immediately following the
branch gets executed (the branch-delay slot)

* Delayed Branch means we always execute inst
after branch

* This optimization is used with MIPS

Example: Nondelayed vs. Delayed Branch

Nondelayed Branch

or S8, $9,
add $1, $2,

sub $4, S5,

' beq $1, $4,

xor $10, S$1,

Exit:

Delayed Branch

$10 add $1, $2,83

$3 sub $4, $5, $6
S6 beq $1, $4, Exit

Exit or §$8, $9, $10
$11 xor $10, S$1, S11

Exit:

Control Hazards: Branching

* Notes on Branch-Delay Slot

— Worst-Case Scenario: put a nop in the branch-
delay slot

— Better Case: place some instruction preceding the
branch in the branch-delay slot—as long as the
changed doesn’t affect the logic of program

* Re-ordering instructions is common way to speed up
programs

e Compiler usually finds such an instruction 50% of time
* Jumps also have a delay slot ...

Greater Instruction-Level Parallelism (ILP)

Deeper pipeline (5 => 10 => 15 stages)
— Less work per stage = shorter clock cycle
Multiple issue “superscalar”
— Replicate pipeline stages = multiple pipelines
— Start multiple instructions per clock cycle
— CPI < 1, so use Instructions Per Cycle (IPC)
— E.g., 4GHz 4-way multiple-issue

e 16 BIPS, peak CPI =0.25, peak IPC=4
— But dependencies reduce this in practice
“Out-of-Order” execution

— Reorder instructions dynamically in hardware to reduce
impact of hazards

Take CS152 next to learn about these techniques!

w»
o
-_—
o
o
Q
=
=
o]
o
3
Q
>
o
g
Q
<
Q
>
P
®
Q.
>
2]
=
c
®)
=7
o
)
—
1))
<
a
U
Q
=
=
o]
T
3

In Conclusion

Pipelining increases throughput by overlapping
execution of multiple instructions in different

pipestages
Pipestages should be balanced for highest clock rate
Three types of pipeline hazard limit performance

— Structural (always fixable with more hardware)

— Data (use interlocks or bypassing to resolve)
— Control (reduce impact with branch prediction or branch
delay slots)

