CS 61C: Great Ideas in Computer Architecture (Machine Structures) **Pipelining**

Instructors:

Krste Asanovic & Vladimir Stojanovic http://inst.eecs.berkeley.edu/~cs61c/

Review: Single-Cycle Processor

- · Five steps to design a processor:
 - 1. Analyze instruction set → datapath requirements
 - 2. Select set of datapath components & establish clock methodology

- 3. Assemble datapath meeting the requirements
- 4. Analyze implementation of each instruction to determine setting of control points that effects the register transfer.
- 5. Assemble the control logic
 - Formulate Logic Equations
 - Design Circuits

Single Cycle Performance

- Assume time for actions are
 - 100ps for register read or write; 200ps for other events
- Clock period is?

Instr	Instr fetch	Register read	ALU op	Memory access	Register write	Total time
lw	200ps	100 ps	200ps	200ps	100 ps	800ps
sw	200ps	100 ps	200ps	200ps		700ps
R-format	200ps	100 ps	200ps		100 ps	600ps
beq	200ps	100 ps	200ps			500ps

- Clock rate (cycles/second = Hz) = 1/Period (seconds/cycle)
- · What can we do to improve clock rate?
- · Will this improve performance as well? Want increased clock rate to mean faster programs

Single Cycle Performance

- Assume time for actions are
 - 100ps for register read or write; 200ps for other events
- · Clock period is?

	•					
Instr	Instr fetch	Register read	ALU op	Memory access	Register write	Total time
lw	200ps	100 ps	200ps	200ps	100 ps	800ps
sw	200ps	100 ps	200ps	200ps		700ps
R-format	200ps	100 ps	200ps		100 ps	600ps
beq	200ps	100 ps	200ps			500ps

- · What can we do to improve clock rate?
- · Will this improve performance as well? Want increased clock rate to mean faster programs

Gotta Do Laundry

• Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, fold, and put away

- Washer takes 30 minutes

- Dryer takes 30 minutes

- "Folder" takes 30 minutes

- "Stasher" takes 30 minutes to put clothes into drawers

Steps in Executing MIPS 1) IFtch: Instruction Fetch, Increment PC 2) Dcd: Instruction Decode, Read Registers 3) Exec: Mem-ref: Calculate Address Arith-log: Perform Operation 4) Mem: Load: Read Data from Memory Store: Write Data to Memory 5) WB: Write Data Back to Register

Pipelining Performance (1/3)

- Use T_c ("time between completion of instructions") to measure speedup
 - $T_{c,pipelined} \ge \frac{T_{c,single-cycle}}{Number of stages}$
 - Equality only achieved if stages are balanced (i.e. take the same amount of time)
- If not balanced, speedup is reduced
- Speedup due to increased throughput
 - Latency for each instruction does not decrease

24

Pipelining Performance (2/3)

- · Assume time for stages is
 - 100ps for register read or write
 - 200ps for other stages

Instr	Instr fetch	Register read	ALU op	Memory access	Register write	Total time
lw	200ps	100 ps	200ps	200ps	100 ps	800ps
sw	200ps	100 ps	200ps	200ps		700ps
R-format	200ps	100 ps	200ps		100 ps	600ps
beq	200ps	100 ps	200ps			500ps

- · What is pipelined clock rate?
 - Compare pipelined datapath with single-cycle datapath

Clicker/Peer Instruction

Which statement is false?

- A: Pipelining increases instruction throughput
- B: Pipelining increases instruction latency
- C: Pipelining increases clock frequency
- D: Pipelining decreases number of components

Administrivia

- Project 1-2 due date now 11:59PM Saturday 3/7
- HW 4 due date now 11:59PM Tuesday 3/10
- 10% Extra Credit for each finished by original deadline

28

Pipelining Hazards

A *hazard* is a situation that prevents starting the next instruction in the next clock cycle

1) Structural hazard

 A required resource is busy (e.g. needed in multiple stages)

2) Data hazard

- Data dependency between instructions
- Need to wait for previous instruction to complete its data read/write

3) Control hazard

- Flow of execution depends on previous instruction

29

1. Structural Hazards

- · Conflict for use of a resource
- MIPS pipeline with a single memory?
 - Load/Store requires memory access for data
 - Instruction fetch would have to *stall* for that cycle
 - Causes a pipeline "bubble"
- Hence, pipelined datapaths require separate instruction/data memories
 - Separate L1 I\$ and L1 D\$ take care of this

30

Structural Hazard #2: Registers (2/2)

- Two different solutions have been used:
 - Split RegFile access in two: Write during 1st half and Read during 2nd half of each clock cycle
 - Possible because RegFile access is VERY fast (takes less than half the time of ALU stage)
 - 2) Build RegFile with independent read and write ports
- Conclusion: Read and Write to registers during same clock cycle is okay

Structural hazards can always be removed by adding hardware resources

2. Data Hazards (1/2)

Consider the following sequence of instructions:

add \$t0, \$t1, \$t2 sub \$t4, \$t0, \$t3 and \$t5, \$t0, \$t6 or \$t7, \$t0, \$t8 xor \$t9, \$t0, \$t10

34

2. Data Hazards (2/2) • Data-flow backwards in time are hazards Time (clock cycles) I add \$t0,\$t1,\$t2 is Reg DB Reg s sub \$t4,\$t0,\$t3 IS Reg DB Reg or \$t7,\$t0,\$t6 or \$t7,\$t0,\$t8 e xor \$t9,\$t0,\$t10

Datapath for Forwarding (1/2)

· What changes need to be made here?

Datapath for Forwarding (2/2)

• Handled by forwarding unit

Data Hazard: Loads (1/4)

• Recall: Dataflow backwards in time are hazards

- · Can't solve all cases with forwarding
 - Must stall instruction dependent on load, then forward (more hardware)

Data Hazard: Loads (2/4)

Hardware stalls pipeline

Called "hardware interlock"

we want, but in reality stalls

Schematically, this is what

sub \$t3,\$t0,\$t2

lw \$t0, 0(\$t1)

and \$t5,\$t0,\$t4

or \$t7,\$t0,\$t6 stall just

bub part of

Data Hazard: Loads (3/4)

• Stalled instruction converted to "bubble", acts like nop

Data Hazard: Loads (4/4)

- Slot after a load is called a load delay slot
 - If that instruction uses the result of the load, then the hardware interlock will stall it for one cycle
 - Letting the hardware stall the instruction in the delay slot is equivalent to putting an explicit nop in the slot (except the latter uses more code space)
- Idea: Let the compiler put an unrelated instruction in that slot \rightarrow no stall!

Code Scheduling to Avoid Stalls

- Reorder code to avoid use of load result in the next instruction!
- MIPS code for D=A+B; E=A+C;

In The News: SanDisk announces ½ PetaByte flash drive

- 512TB of flash memory in 3U of rack space
 That's 2^49 bytes
- 780,000 I/O/second
- 7 GB/s sustained bandwidth

3. Control Hazards

- · Branch determines flow of control
 - Fetching next instruction depends on branch outcome
 - Pipeline can't always fetch correct instruction
 Still working on ID stage of branch
- BEQ, BNE in MIPS pipeline
- Simple solution Option 1: *Stall* on every branch until branch condition resolved
 - Would add 2 bubbles/clock cycles for every Branch! (~ 20% of instructions executed)

Control Hazard: Branching

- Optimization #1:
 - Insert special branch comparator in Stage 2
 - As soon as instruction is decoded (Opcode identifies it as a branch), immediately make a decision and set the new value of the PC
 - Benefit: since branch is complete in Stage 2, only one unnecessary instruction is fetched, so only one no-op is needed
 - Side Note: means that branches are idle in Stages

Question: What's an efficient way to implement the equality comparison?

Control Hazards: Branching

- Option 2: Predict outcome of a branch, fix up if guess wrong
 - Must cancel all instructions in pipeline that depended on guess that was wrong
 - This is called "flushing" the pipeline
- Simplest hardware if we predict that all branches are NOT taken
 - Why?

Control Hazards: Branching

- Option #3: Redefine branches
 - Old definition: if we take the branch, none of the instructions after the branch get executed by accident
 - New definition: whether or not we take the branch, the single instruction immediately following the branch gets executed (the branch-delay slot)
- Delayed Branch means we always execute inst after branch
- · This optimization is used with MIPS

Example: Nondelayed vs. Delayed Branch Nondelayed Branch or \$8, \$9, \$10 add \$1, \$2, \$3 sub \$4, \$5, \$6 beq \$1, \$4, Exit or \$8, \$9, \$10 xor \$10, \$1, \$11 Exit: Exit: Exit: Exit: Exit: Exit: Delayed Branch add \$1, \$2,\$3 sub \$4, \$5, \$6 beq \$1, \$4, Exit or \$8, \$9, \$10 xor \$10, \$1, \$11

Control Hazards: Branching

- Notes on Branch-Delay Slot
 - Worst-Case Scenario: put a nop in the branchdelay slot
 - Better Case: place some instruction preceding the branch in the branch-delay slot—as long as the changed doesn't affect the logic of program
 - Re-ordering instructions is common way to speed up programs
 - Compiler usually finds such an instruction 50% of time
 - Jumps also have a delay slot ...

Greater Instruction-Level Parallelism (ILP)

- Deeper pipeline (5 => 10 => 15 stages)
 Less work per stage ⇒ shorter clock cycle
- Multiple issue "superscalar"
 - Replicate pipeline stages ⇒ multiple pipelines
 - Start multiple instructions per clock cycle
 - CPI < 1, so use Instructions Per Cycle (IPC)
 - E.g., 4GHz 4-way multiple-issue
 16 BIPS, peak CPI = 0.25, peak IPC = 4
 - But dependencies reduce this in practice
- "Out-of-Order" execution
 - Reorder instructions dynamically in hardware to reduce impact of hazards
- Take CS152 next to learn about these techniques!

In Conclusion

- Pipelining increases throughput by overlapping execution of multiple instructions in different pipestages
- Pipestages should be balanced for highest clock rate
- Three types of pipeline hazard limit performance
 - Structural (always fixable with more hardware)
 - Data (use interlocks or bypassing to resolve)
 - Control (reduce impact with branch prediction or branch delay slots)

54