3/5/15

Review: Single-Cycle Processor

CS 61C: Great Ideas in Computer * Five steps to design a processor:
Architecture (Machine Structures) 1. Analyze instruction set > Processor
. lini datapath requirements dma Input
Pi pelining 2. Select set of datapath Memory

components & establish

clock methodology Iretapatle Output
3. Assemble datapath meeting

the requirements

Krste Asanovic & Vladimir Stojanovic 4. Analyze implementation of each instruction to determine
. setting of control points that effects the register transfer.
http://inst.eecs.berkeley.edu/~cs61c/ 5. Assemble the control logic
* Formulate Logic Equations
« Design Circuits

Instructors:

Review: A Single-Cycle Datapath

TSt Instruction<31:0> Single Cycle Performance
Memory 5 3 EE * Assume time for actions are
Ade Vv W — 100ps for register read or write; 200ps for other events
Rs Rt Rd Imml6 . .
nPC_sel |RegDst * Clock period is?
Rd Rt Equal AlUctr MemtoReg -
Instr Instr fetch | Register | ALU op Memory | Register | Total time
MemWe read access write
Eﬂﬂlf 5 ‘5}5 15}[Iw 200ps | 100ps |200ps |200ps |100ps |800ps
busw| R Ra Rb sw 200ps 100 ps 200ps 200ps 700ps
- RegFile R-format | 200ps 100 ps 200ps 100 ps | 600ps
] beq 200ps 100 ps 200ps 500ps
clk .
_ g - Wrkn Adr » Clock rate (cycles/second = Hz) = 1/Period (seconds/cycle)
imml6——| &)} Data In Data .
16 |2 % Memory » What can we do to improve clock rate?
5 clk — + Will this improve performance as well?
T T Want increased clock rate to mean faster programs
ExtOp ALUSrc
Single Cycle Performance Gotta Do Laundry
* Assume time for actions are * Ann, Brian, Cathy, Dave
— 100ps for register read or write; 200ps for other events each have one load of clothes to 6586
* Clock period is? wash, dry, fold, and put away
Instr Instr fetch | Register |ALUop | Memory |Register | Total time — Washer takes 30 minutes
read access write
Iw 200ps 100 ps 200ps 200ps 100 ps)
sw 200ps | 100ps | 200ps | 200ps 700ps — Dryer takes 30 minutes J=
R-format |200ps | 100ps | 200ps 100ps | 600ps E’
beq 200ps 100ps | 200ps 500ps — “Folder” takes 30 minutes .
i ?
. What can we do to improve clock rate? — “Stasher” takes 30 minutes to put
« Will this improve performance as well? clothes into drawers
Want increased clock rate to mean faster programs

Sequential Laundry
GIPM 7 8 9 10 11 12 1 2AM

%'E'so'm'ﬁ's_q'?,o'30'%'%'30'30'%'%'30'30'

-
. Time

@ A __

k| D A 83 i

b g = -

°lB A

d

i * Sequential laundry takes

8 hours for 4 loads

Pipelined Laundry

6PM 7 8 9 10 11 12 1 2AM

[| .
3030303030 Time

* Pipelined laundry takes
3.5 hours for 4 loads!

Pipelining Lessons (1/2)
6PM 7 8 9 * Pipelining doesn’t help latency
of single task, it helps
throughput of entire workload
* Multiple tasks operating

simultaneously using different
resources

Time

* Potential speedup = Number

h pipe stages
K * Time to “fill” pipeline and time
to “drain” it reduces speedup:
2.3X v. 4X in this example

Pipelining Lessons (2/2)
6PM 7 8 9 * Suppose new Washer

takes 20 minutes, new

I Time

Steps in Executing MIPS

1) IFtch: Instruction Fetch, Increment PC
2) Dcd: Instruction Decode, Read Registers
3) Exec:

Mem-ref: Calculate Address

Arith-log: Perform Operation
4) Mem:

Load: Read Data from Memory

Store: Write Data to Memory
5) WB: Write Data Back to Register

T —
a 3030 30 30 30 30 30 Stasher takes 20
- minutes. How much
iel: =) A o T
. j& faster is pipeline?
0 S . A ¢ Pipeline rate limited by
K 3 LN slowest pipeline stage
a O =L k Unbalanced lengths of
€ pipe stages reduces
r speedup
Single Cycle Datapath
g [
c r 3 |
8} S o
o g g %. g s g
£8 o¢
[imm
1. Instruction 2. Decode/ 5. Write
Fetch Register Reada' Execute 4. Memory Back

3/5/15

Pipeline registers

[4

c rd! S = -

Q Qg‘ E’ @ =
© =) > ©

— - (0] ‘_,0
ge @l ® 85
c
=] £
imn |

More Detailed Pipeline

1. Instruction 2. Decode/ 3 Eyecute 4. Memor
Fetch Register Read - '

* Need registers between stages
— To hold information produced in previous

5. Write
Y Back

cycle

IF for Load, Store, ...

ID for Load, Store, ...

EX for Load

gAY

MEM for Load

3/5/15

WB for Load — Oops!

Wiite back

Wrong
register
number!

Corrected Datapath for Load

o

Pipelined Execution Representation
_Time
OF_Tio_ Jex ImMEM]wB |

OF_Tio Tex Imemlwa |
bF _Tib Tex [memlwe]
bF _Tio Tex Tmemlwe]
OF _Tib Tex [mEm[wB |
OF _Tib Tex Tmem[wB]

* Every instruction must take same number of
steps, so some stages will idle
— e.g. MEM stage for any arithmetic instruction

Graphical Pipeline Diagrams

c
22 jrd ~Registe] |~ >
SE [RH Fi 8
5 (e e 85
28 N €
i nl I
1. Instruction 2. Decode/ 3. Execute T 4. Memory T 5. Write
Fetch Register Read Back

* Use datapath figure below to represent pipeline:
F b Jex [mem]wsB]

e

Graphical Pipeline Representation

» RegFile: left half is write, right half is read
Time (clock cycles)

Load

Add

=~ 5 -

Store
Sub
Or

=0 a=0

Pipelining Performance (1/3)

* Use T, (“time between completion of
instructions”) to measure speedup
Tc,single—cyc]c

Number of stages

— Equality only achieved if stages are balanced
(i.e. take the same amount of time)

* If not balanced, speedup is reduced

* Speedup due to increased throughput
— Latency for each instruction does not decrease

c,pipelined =

3/5/15

Pipelining Performance (2/3)

* Assume time for stages is

— 100ps for register read or write

— 200ps for other stages
Instr Instr Register | ALUop |Memory |Register | Total
fetch read access write time
w 200ps | 100ps | 200ps |200ps | 100 ps u
sw 200ps 100 ps 200ps 200ps 700ps
R-format | 200ps 100 ps 200ps 100 ps 600ps
beq 200ps 100 ps 200ps 500ps

* What is pipelined clock rate?

Pipelining Performance (3/3)

Program
execution Time
order

(in instructions)

Single-cycle | s1,100($0) " nog| au | 0% | fog

200 400 600 800 1000 1200 1400

1600 1800

T. =800 ps
c Iw $2,200(30) 800 ps '"5};7§;'°"‘Reg A | e, |Reg
f=1.25GHz Instruction|
Iw $3, 300($0) 800 ps fetch
800 ps
Program

execution
order
(in instructions)

Time

Pipelined | $1, 100(s0)| ™" [m

200 400 600 800 1000 1200 1400

Data

AU access

Rog

Tc =200 pS |1 s2,200(50) 200 ps | "t

f=5GHz
Iw $3, 300($0)

Da
Reg| A | Do o

200 ps

ata

— Compare pipelined datapath with single-cycle datapath

Instruction|
fetch

.

200 ps 200ps 200 ps 200 ps 200 ps

Clicker/Peer Instruction

Which statement is false?

* A: Pipelining increases instruction throughput
* B: Pipelining increases instruction latency

* C: Pipelining increases clock frequency

* D: Pipelining decreases number of components

Administrivia

* Project 1-2 due date now 11:59PM Saturday 3/7
* HW 4 due date now 11:59PM Tuesday 3/10

* 10% Extra Credit for each finished by original
deadline

Pipelining Hazards

A hazard is a situation that prevents starting the
next instruction in the next clock cycle
1) Structural hazard

— A required resource is busy
(e.g. needed in multiple stages)

2) Data hazard
— Data dependency between instructions

— Need to wait for previous instruction to
complete its data read/write

3) Control hazard
— Flow of execution depends on previous instruction

1. Structural Hazards

* Conflict for use of a resource
* MIPS pipeline with a single memory?
— Load/Store requires memory access for data
— Instruction fetch would have to stall for that cycle
« Causes a pipeline “bubble”
* Hence, pipelined datapaths require separate
instruction/data memories
— Separate L1 1$ and L1 DS take care of this

3/5/15

Structural Hazard #1: Single Memory

Time (clock cycles)

Trying to read

n

S |Load Ree same

t memory

r |Instr1 twice in same
lock cycle

? Instr 2

d [instr3

e

I YInstr 4

Structural Hazard #2: Registers (1/2)

Time (clock cycles)

|
n ; :
S (Load Can we read
t and write to
r |Instr1 i registers
: RImultanéously
? Instr 2
d (instr3 E
e
I YInstr 4

Structural Hazard #2: Registers (2/2)

* Two different solutions have been used:

1) Split RegFile access in two: Write during 15t half and
Read during 2" half of each clock cycle

Possible because RegFile access is VERY fast
(takes less than half the time of ALU stage)

2) Build RegFile with independent read and write ports

* Conclusion: Read and Write to registers during
same clock cycle is okay

Structural hazards can always be removed by
adding hardware resources

2. Data Hazards (1/2)

* Consider the following sequence of
instructions:

add s$t0, $tl1, st2
sub $t4, $t0, $t3
and $t5, $t0, $t6
or $t7, $t0, $t8
xor $t9, S$t0, $tl0

2. Data Hazards (2/2)

* Data-flow backwards in time are hazards
Time (clock cycles)
IDIRF, i ; i

IF
add $t0,5t1,$t2[1s [resf
sub $t4,5t0,$t3

and $t5,5t0,$t6

03—

or $t7,5t0,$t8

- 0a~=0

xor $t9,5t0,$t10

Data Hazard Solution: Forwarding

* Forward result as soon as it is available
— OK that it’s not stored in RegFile yet

IF EIDIRF

add $t0,$t1,9t2] 1s Jf{ree
sub $t4,5t0,$t3

and $t5,5t0,$t6
or $t7,5t0,$t8

xor $t9,5t0,$t10

3/5/15

Datapath for Forwarding (1/2)

» What changes need to be made here?

Datapath for Forwarding (2/2)

* Handled by forwarding unit

ID/EX EX/MEM MEMWB

Registers

Data
memory

|&‘

EXMEM RegisterRd

EFF]

MEM/WB RegisterRd

Data Hazard: Loads (1/4)

* Recall: Dataflow backwards in time are
hazards

IDIRF X MEM WB_

iw $10,0(6t1)[ﬁb? f

sub $t3,5t0,$t2

e Can’t solve all cases with forwarding

— Must stall instruction dependent on load, then
forward (more hardware)

Data Hazard: Loads (2/4)

Schematically, this is what
we want, but in reality stalls
done “horizomally"

* Hardware stalls pipeline

— Called “hardware interlock”
IF_: ID/RF:

Iw 510, 0($t1) [THie
sub $t3,$t0,$t2

and $t5,5t0,$t4

How to
or $t7,$t0,5t6 isiailjust -
part of
pipeliﬁe?

Data Hazard: Loads (3/4)

 Stalled instruction converted to “bubble”, acts like nop

Iw $t0, 0($t1)

sub ; t2

sub $t3,5t0,$t2

bls)
and $t5,5t0,$t4 / Rex
First two pipe H
'

BN

or $t7 $t0 $tstages stall by

Nty
[

repeating stage

one cycle later

Data Hazard: Loads (4/4)

* Slot after a load is called a load delay slot
— If that instruction uses the result of the load, then
the hardware interlock will stall it for one cycle
— Letting the hardware stall the instruction in the
delay slot is equivalent to putting an explicit nop
in the slot (except the latter uses more code
space)

* Idea: Let the compiler put an unrelated
instruction in that slot = no stall!

3/5/15

Code Scheduling to Avoid Stalls

¢ Reorder code to avoid use of load result in the
next instruction!

* MIPS code for D=A+B; E=A+C;

Method 1: # Method 2:

1w $tl, 0($t0) 1w $tl, 0($t0)

1w 4($t0) 1w
Stalll———

add $t3, $til, 1w

sw $t3, 12($t0) add $t3,

Stalll— s 8(5t0) v

© add s$t5, sti, add $t5, $t1,

sw $t5, 16(st0) sw $t5, 16($t0)
13 cycles 11 cycles

In The News: SanDisk announces
% PetaByte flash drive
* 512TB of flash memory in 3U of rack space
— That’s 2749 bytes
« 780,000 1/0/second
e 7 GB/s sustained bandwidth

3. Control Hazards

* Branch determines flow of control

— Fetching next instruction depends on branch
outcome

— Pipeline can’t always fetch correct instruction
« Still working on ID stage of branch
* BEQ, BNE in MIPS pipeline
* Simple solution Option 1: Stall on every
branch until branch condition resolved

— Would add 2 bubbles/clock cycles for every
Branch! (~ 20% of instructions executed)

Stall => 2 Bubbles/Clocks

Time (clock cycles)

| i

%‘ beq ™ palirm

r. [Instr1 IE'

? Instr 2 e

(e’ Instr 3

I Vnstr 4
Where do we do the compareé for the branch?

Control Hazard: Branching

* Optimization #1:
— Insert special branch comparator in Stage 2

— As soon as instruction is decoded (Opcode
identifies it as a branch), immediately make a
decision and set the new value of the PC

— Benefit: since branch is complete in Stage 2, only
one unnecessary instruction is fetched, so only
one no-op is needed

— Side Note: means that branches are idle in Stages
3,4and5

Question: What'’s an efficient way to implement the equality comparison?

One Clock Cycle Stall

Time (clock cycles)

beq

Instr 1

TS -

Instr 2

Instr 3

Instr 4

= 0a=0

Branch compa;'ato;' mc:ved to Decode stage.

3/5/15

Control Hazards: Branching

* Option 2: Predict outcome of a branch, fix up
if guess wrong
— Must cancel all instructions in pipeline that

depended on guess that was wrong

— This is called “flushing” the pipeline

* Simplest hardware if we predict that all
branches are NOT taken
— Why?

Control Hazards: Branching

* Option #3: Redefine branches

— 0ld definition: if we take the branch, none of the
instructions after the branch get executed by accident

— New definition: whether or not we take the branch,
the single instruction immediately following the
branch gets executed (the branch-delay slot)

* Delayed Branch means we always execute inst

after branch

* This optimization is used with MIPS

Example: Nondelayed vs. Delayed Branch

Nondelayed Branch Delayed Branch

or $8, $9, $10 add $1, $2,$3
add $1, $2, $3 sub $4, $5, $6
sub $4, $5, $6 beq $1, $4, Exit
beq $1, $4, Exit or $8, $9, $10

xor $10, S$1, $11 xor $10, S$1, $11

Exit: Exit:

Control Hazards: Branching

* Notes on Branch-Delay Slot

— Worst-Case Scenario: put a nop in the branch-
delay slot
— Better Case: place some instruction preceding the
branch in the branch-delay slot—as long as the
changed doesn’t affect the logic of program
* Re-ordering instructions is common way to speed up
programs
« Compiler usually finds such an instruction 50% of time
« Jumps also have a delay slot ...

Greater Instruction-Level Parallelism (ILP)

* Deeper pipeline (5 => 10 => 15 stages)
— Less work per stage = shorter clock cycle
* Multiple issue “superscalar”
— Replicate pipeline stages = multiple pipelines
— Start multiple instructions per clock cycle
— CPI < 1, so use Instructions Per Cycle (IPC)
— E.g., 4GHz 4-way multiple-issue
* 16 BIPS, peak CPI = 0.25, peak IPC = 4
— But dependencies reduce this in practice
* “Out-of-Order” execution
— Reorder instructions dynamically in hardware to reduce
impact of hazards
* Take CS152 next to learn about these techniques!

d
&
oy
(=]
e
®
3
o
2
E]
o)
=]
Q
z
Y
=3
(=]
[0]
Q
5
2
F
S
g
=]
%
<
3
e
o
3
=)
z
E]

In Conclusion

* Pipelining increases throughput by overlapping
execution of multiple instructions in different
pipestages

* Pipestages should be balanced for highest clock rate

* Three types of pipeline hazard limit performance

— Structural (always fixable with more hardware)
— Data (use interlocks or bypassing to resolve)

— Control (reduce impact with branch prediction or branch
delay slots)

3/5/15

