CS 61C: Great Ideas in Computer
Architecture (Machine Structures)
Caches Part |

Instructors:
Krste Asanovic & Vladimir Stojanovic
http://inst.eecs.berkeley.edu/~cs61c/

3/10/15

New-School Machine Structures
(It’s a bit more complicated!)

Software Hardware Z
* Parallel Requests
Assigned to computer
e.g., Search “Katz”
 Parallel Threads
Assigned to core
e.g., Lookup, Ads
* Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions
* Parallel Data

=== g
Warehouse 3 Smart

Harness
P N

Inpyt—/O’utput

. . . . ~~ Functional
>1 data item @ one time ﬁt}qusnon Umt(s)// Unit(s)
e.g., Add of 4 pairs of words

T ey ety ey &Y
* Hardware descriptions P Cache Memory = 7

All gates @ one time

¢ Programming Languages = Dn Logic Gates

D

Components of a Computer

Memory
Processor
Enable?
Read/Write
Control
Program
Datapath

T |

-y Write
Registers Data

(Arithmetic &logic Unit] ¥ Read
(ALU)

Data

Processor-Memory Interface 1/0-Memory Interfaces

Processor-DRAM Gap (latency)

WProc 60%/year \

1000 | oo Py

3

C Processor-Memory

g 100 Performance Gap:

!6 (growing 50%/yr)

«

@ 10 | e e / DRAM

a 7%/year
1

1980
1981
1982
1983
1984
1985
1986
1987

[l =2
X 0 O N
a9 o a
PR g

1992
1993
1994
1995
1996
1997
1998
1999
2000

Time
1980 microprocessor executes ~one instruction in same time as DRAM access
2015 microprocessor executes ~1000 instructions in same time as DRAM access

4

Big Idea: Memory Hierarchy

Processor
Inner Increasing
distance from
. @ processor,
Levels in decreasing
memory Level 2 speed

hierarchy/ Level 3 \
Outer / e \
d

Level n \

Size of memory at each level
As we move to outer levels the latency goes up
and price per bit goes down. Why?

Library Analogy

* Writing a report based on books on reserve
— E.g., works of J.D. Salinger

* Go to library to get reserved book and place on
desk in library

¢ If need more, check them out and keep on desk
— But don’t return earlier books since might need them

* You hope this collection of ~10 books on desk
enough to write report, despite 10 being only
0.00001% of books in UC Berkeley libraries

Memory Address (one dot per access)

Real Memory Reference Patterns

Time

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual
Memory. IBM Systems Journal 10(3): 168-192 (1971)

3/10/15

Big Idea: Locality

e Temporal Locality (locality in time)
— Go back to same book on desktop multiple times
— If a memory location is referenced, then it will tend to
be referenced again soon
* Spatial Locality (locality in space)
— When go to book shelf, pick up multiple books on J.D.
Salinger since library stores related books together

— If a memory location is referenced, the locations with
nearby addresses will tend to be referenced soon

Memory Address (one dot per access)

Memory Reference Patterns

Temporal
Locality

1
-

~

Locality

Donald J. Hatfield, Jeanette Gerald: Prongn““e
Restructuring for Virtual Memory. IBM Systems
Tonrnal 10(3): 168-1Q2 (1071)

Principle of Locality

* Principle of Locality: Programs access small
portion of address space at any instant of time

* What program structures lead to temporal
and spatial locality in instruction accesses?

* In data accesses?

Memory Reference Patterns
Address M R

Instruction| .° ,° ,° T ,° ° .°
fetches |.° o°
subroutine subroutine
Stack call ——Jreturn

accesses °
°

argument access

Data o
accesses ° scalar accesses

Time

Cache Philosophy

* Programmer-invisible hardware mechanism to
give illusion of speed of fastest memory with
size of largest memory
— Works fine even if programmer has no idea what
acacheis

— However, performance-oriented programmers
today sometimes “reverse engineer” cache design
to design data structures to match cache

— We’'ll do that in Project 3

Memory Access without Cache

* Load word instruction: lw $t0,0(S$tl)
* $tl contains 1022, Memory[1022] = 99

Processor issues address 1022,,, to Memory
Memory reads word at address 1022,,,, (99)
Memory sends 99 to Processor

Processor loads 99 into register $t0

s W e

3/10/15

Adding Cache to Computer

Memory
Processor Enable?
Read/Write
Control | I
I [
Datapath Cache
|Address

T

Arithmetic & Logic Unit

[Write
Data

Read
Data

1/0-Memory Interfaces
14

Processor-Memory Interface

Memory Access with Cache
* Load word instruction: lw $t0,0(S$tl)
* Stl contains 1022, Memory[1022] = 99
¢ With cache (similar to a hash)
1. Processor issues address 1022, to Cache
2. Cache checks to see if has copy of data at address
1022,
2a. If finds a match (Hit): cache reads 99, sends to processor
2b. No match (Miss): cache sends address 1022 to Memory
I. Memory reads 99 at address 1022,,,
Il. Memory sends 99 to Cache

Ill. Cache replaces word with new 99
IV. Cache sends 99 to processor

3. Processor loads 99 into register $t0

Administrivia

* Midterm 1 results out last week

Project 2-1 due Sunday March 15t, 11:59PM
— Use pinned Piazza threads!

— We’'ll penalize those who ask, but don’t search!
* Guerilla sections starting this weekend

— Optional sections, focus on lecture/exam material,
not projects

— Vote for time on Piazza poll

Midterm Score Distribution

Mean: 56.1
Min: 16.5
Max: 90.0
Median: 58.0

Std. Dev.: 15

In the News: RowHammer Exploit
Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors
Yoongu Kim' Ross Daly* Jeremie Kim' ~ Chris Fallin® Ji Hye Lee'
Donghyuk Lee' Chris Wilkerson® Konrad Lai Onur Mutlu'
ICarnegie Mellon University ~ “Intel Labs
* CMU + Intel researchers found commercial DRAM
chips susceptible to neighboring bits flipping if
one row of memory accessed frequently
* Google Engineers figured out how to use this to
gain root access on a machine! Almost all laptops
susceptible, but server ECC memory helps reduce
impact.

Cache “Tags”

* Need way to tell if have copy of location in
memory so that can decide on hit or miss

¢ On cache miss, put memory address of block
in “tag address” of cache block
— 1022 placed in tag next to data from memory (99)

Tog | pata |
252 12 From earlier
| 1022 99 | instructions

131 7 7
2041 20

19

3/10/15

Anatomy of a
16 Byte Cache,
4 Byte Block

Processor

. Operatlons.: 32.bit 4\ Y
1. Cache Hit Address Data
2. Cache Miss
3. Refill cache from

memory

¢ Cache needs Address
Tags to decide if
Processor Address is a
Cache Hit or Cache Miss 32-bit
— Compares all 4 tags Addressyy

Cache Replacement

¢ Suppose processor now requests location 511, which
contains 11?

* Doesn’t match any cache block, so must “evict” one
resident block to make room
— Which block to evict?

* Replace “victim” with new memory block at address 511

Tag | paa |
252 12
1022 99
| 511 11 |
2041 20 .

Block Must be Aligned in Memory

* Word blocks are aligned, so binary address of

all words in cache always ends in 00,

* How to take advantage of this to save
hardware and energy?

* Don’t need to compare last 2 bits of 32-bit
byte address (comparator can be narrower)

=> Don’t need to store last 2 bits of 32-bit byte
address in Cache Tag (Tag can be narrower)

Anatomy of a 32B

Cache, 8B Block Processor

* Blocks must be aligned "y :

in pairs, otherwise it ot

could get same word

twice in cache v A
=>Tags only have even- 252 12 | 10

numbered words
=> Last 3 bits of address

always 000,,,, A Cache
=Tags, comparators can

be narrower ol

* Can get hit for either

Hardware Cost of
Cache Processor
* Need to compare

32-bit 32-bi
every tag to the Address | oata
Processor address
* Comparators are 0{ =Y v }
expensive et -
L]

Optimization: 2 sets, -~

—> % comparators >t 1"l ISR
2 P Cache i

1 Address bit selects))
. 32-bit 32-bit

WhICh set Address Data \/

3/10/15

Processor Address Fields used by
Cache Controller
* Block Offset: Byte address within block
* Set Index: Selects which set

* Tag: Remaining portion of processor address
Processor Address (32-bits total)

Tag ‘Setlndex Block offset ‘

¢ Size of Index = log2 (number of sets)

* Size of Tag = Address size — Size of Index
—log2 (number of bytes/block)

What is limit to number of sets?

* Can save more comparators if have more than
2 sets

* Limit: As Many Sets as Cache Blocks — only
needs one comparator!

* Called “Direct-Mapped” Design

Block offset ‘

Tag ‘ Index

Mapping a 6-bit Memory Address

Mem Block Within Block Within $ Byte Offset Within Block
$ Block Index (e.g., Word)
Tag
* Inexample, block size is 4 bytes/1 word (it could be multi-word)
¢ Memory and cache blocks are the same size, unit of transfer between memory and
cache

* #Memory blocks >> # Cache blocks

— 16 Memory blocks/16 words/64 bytes/6 bits to address all bytes

— 4 Cache blocks, 4 bytes (1 word) per block

— 4 Memory blocks map to each cache block
Byte within block: low order two bits, ignore! (nothing smaller than a block)
* Memory block to cache block, aka index: middle two bits
* Which memory block is in a given cache block, aka tag: top two bits

One More Detail: Valid Bit

* When start a new program, cache does not
have valid information for this program

* Need an indicator whether this tag entry is
valid for this program

* Add a “valid bit” to the cache tag entry
— 0 =>cache miss, even if by chance, address = tag
— 1 =>cache hit, if processor address = tag

Caching: A Simple First Example

Main Memory
0000xx
One word blocks
0001xx
Cache oxx Two low order bits (xx)
Index Valid Tag Data define the byte in the
0011xx
/ block (32b words)
00 0100xx
01 0101xx
10 [0710xx
11 \ 0111xx Q: Where in the cache is
\ 1000xx the mem block?
Q: Is the memory block in 1001xx
cache? 1010xx Use next 2 low-order
Compare the cache tag to the 1011xx memory address bits —
high-order 2 memory address 1100xx the index — to determine
bits to tell if the memory 1101xx which cache block (i.e.,
block is in the cache 1Thoxx modulo the number of
(provided valid bit is set) 1111xx blocks in the cache)

Direct-Mapped Cache Example

* One word blocks, cache size = 1K words (or 4KB)

Block offset
3130 B 210
Valid bit it e © 10 oata
ensures Index Read
something| Indez valh(: Tag . Data _ data
useful in - H I - from
cachefor| | L e — cache
this index instead
of
Compare memory
Tag with ~+32 if a Hit
upper part off
Address to Comparator
see if a Hit

What kind of locality are we taking advantage of?

Multiword-Block Direct-Mapped Cache

* Four words/block, cache size = 1K words

Byte
i 3130 BLR1 . 43210
Hit offset Data

Tag 2 s Block offset
Index

Index Valid _Tag Data

What kind of locality are we taking advaarzwtage of?

3/10/15

Cache Names for Each Organization

* “Fully Associative”: Block can go anywhere
— First design in lecture
— Note: No Index field, but 1 comparator/block
* “Direct Mapped”: Block goes one place
— Note: Only 1 comparator
— Number of sets = number blocks
* “N-way Set Associative”: N places for a block
— Number of sets = number of blocks / N
— Fully Associative: N = number of blocks
— Direct Mapped: N=1

Range of Set-Associative Caches

* For a fixed-size cache, each increase by a factor of 2 in
associativity doubles the number of blocks per set
(i.e., the number of “ways”) and halves the number of
sets —

 decreases the size of the index by 1 bit and
increases the size of the tag by 1 bit

More Associativity (more ways)

Tag | Index

Block offset ‘

Note: IBM persists in calling sets “ways” and ways “sets”.
They’re wrong.

Clickers/Peer Instruction

For a cache with constant total capacity, if we
increase the number of ways by a factor of 2,
which statement is false:

A: The number of sets could be doubled
B: The tag width could decrease

C: The number of tags could stay the same
D: The block size could be halved
* E: Tag width must increase

Typical Memory Hierarchy/_

0On-Chip Components 4=
.
Main Secondary
- Second-
- e Memory M(eDrpokrv
Datapath [7 (DRAM) sl
& Cache Or Flash)
z
Speed (cycles): %'s 1’s 10’s 100’s 1,000,000’s
Size (bytes): 100’s 10K’s M’s G’s Ts
Cost/bit: highest lowest

Principle of locality + memory hierarchy presents programmer with
= as much memory as is available in the cheapest technology at the
= speed offered by the fastest technology

Handling Stores with Write-Through

 Store instructions write to memory, changing
values

* Need to make sure cache and memory have
same values on writes: 2 policies

1) Write-Through Policy: write cache and write
through the cache to memory
— Every write eventually gets to memory

— Too slow, so include Write Buffer to allow processor
to continue once data in Buffer

— Buffer updates memory in parallel to processor

Write-Through

Cache
* Write both values in) A
cache and in memory 20 o
* Write buffer stops CPU Cache
from stalling if memory

cannot keep up
* Write buffer may have
multiple entries to
absorb bursts of writes
* What if store misses in
cache?

3/10/15

Handling Stores with Write-Back

2) Write-Back Policy: write only to cache and
then write cache block back to memory when
evict block from cache

— Writes collected in cache, only single write to
memory per block
— Include bit to see if wrote to block or not, and
then only write back if bit is set
* Called “Dirty” bit (writing makes it “dirty”)

Write-Back
Cache

Store/cache hit, write datain 3p.pit 32_bit/\
cache only & set dirty bit Address Data
— Memory has stale value Cache
Store/cache miss, read data \}

from memory, then update 252
and set dirty bit

— “Write-allocate” policy
Load/cache hit, use value
from cache

On any miss, write back .
evicted block, only if dirty. Azzdrb%
Update cache with new block

and clear dirty bit.

Dirty
Bits

Write-Through vs. Write-Back

* Write-Back
— More complex control logic

* Write-Through:
— Simpler control logic
— More predictable timing — More variable timing (0,1,2
simplifies processor control memory accesses per
logic cache access)
— Easier to make reliable, since — Usually reduces write
memory always has copy of traffic

data (big idea: Redundancy!) — Harder to make reliable,

sometimes cache has only
copy of data

And In Conclusion, ...

* Principle of Locality for Libraries /Computer
Memory

* Hierarchy of Memories (speed/size/cost per
bit) to Exploit Locality

* Cache - copy of data lower level in memory
hierarchy

* Direct Mapped to find block in cache using Tag
field and Valid bit for Hit

¢ Cache design choice:
* Write-Through vs. Write-Back

