CS 61C: Great Ideas in Computer
Architecture (Machine Structures)
Amdahl’s Law and Data-Level Parallelism

Instructors:
Krste Asanovic & Vladimir Stojanovic
http://inst.eecs.berkeley.edu/~cs61c/

Review

 Performance
— Bandwidth, measured in tasks/second
— Latency, time to complete one task

* “Iron Law” of computer performance:

— Secs/program = insts/program * clocks/inst * secs/clock
* |[EEE-754 Floating-Point Standard
— Sign-magnitude significand™* 2 A biased exponent

— Special values, NaN, Infinity, Denormals

New-School Machine Structures
(It’s a bit more compllcated')

Software Hardware
Parallel Requests
Assigned to computer

Warehouse &

Scale
e.g., Search “Katz” Computer &
Harness
Parallel Threads . iciiom &
Assigned to core Achieve High
e.g., Lookup, Ads Performance

Parallel Instructions

>1 instruction @ one time
e.g., 5 pipelined instructions

Parallel Data

Memory /// (Cache)
Inp,ut»/O’utput

Core \X

Functional

>1 data item @ one time
e.g., Add of 4 pairs of words

Hardware descriptions
All gates @ one time

Programming Languages

Lecture

Logic Gates

3

Using Parallelism for Performance

* Two basic ways:
— Multiprogramming
* run multiple independent programs in parallel
* “Easy”
— Parallel computing

* run one program faster
° llHard”

 We'll focus on parallel computing for next few
lectures

Single-Instruction/Single-Data Stream

SISD

(SISD)

Instruction Pool

e Sequential computer

| PU|—

Data Pool

Processing Unit

that exploits no
parallelism in either the
instruction or data
streams. Examples of
SISD architecture are
traditional uniprocessor
machines

Single-Instruction/Multiple-Data Stream
(SIMD or “sim-dee”)

e SIMD computer exploits

SIMD Instruction Pool)
multiple data streams
against a single
" instruction stream to
S [pul— operations that may be
. naturally parallelized,
A | PU|— e.g., Intel SIMD
Instruction extensions
*|PUj— or NVIDIA Graphics

Processing Unit (GPU)

Multiple-Instruction/Multiple-Data Streams
(MIMD or “mim-dee”)

Instruction Pool

Data Pool

|

PU

—> PU

* \Multiple autonomous
processors
simultaneously
executing different
instructions on different
data.

— MIMD architectures

include multicore and
Warehouse-Scale
Computers

Multiple-Instruction/Single-Data Stream
(MISD)

* Multiple-Instruction,
Single-Data stream
computer that exploits
multiple instruction
streams against a single

Lipul< Ls|pyl— data stream.

— Rare, mainly of historical
interest only

MISD Instruction Pool

Data Pool

Flynn® Taxonomy, 1966

Data Streams

Multiple

Single SISD: Intel Pentium 4 SIMD: SSE instructions of x86

Instruction
Streams Multiple MISD: No examples today

MIMD: Intel Xeon €5345 (Clovertown)

* In 2013, SIMD and MIMD most common parallelism in
architectures — usually both in same system!

* Most common parallel processing programming style: Single
Program Multiple Data (“SPMD”)
— Single program that runs on all processors of a MIMD
— Cross-processor execution coordination using synchronization
primitives
e SIMD (aka hw-level data parallelism): specialized function
units, for handling lock-step calculations involving arrays

— Scientific computing, signal processing, multimedia (audio/

video processing) *Prof. Michael

Flynn, Stanford

Big Idea: Amdahl’s (Heartbreaking) Law

 Speedup due to enhancement E is

Exec time w/o E
Speedup W/ E = ——-mmmmommmm e
Exec time w/ E

e Suppose that enhancement E accelerates a fraction F (F <1)
of the task by a factor S (S>1) and the remainder of the task is
unaffected

Execution Time w/ E = Execution Time w/o E x [(1-F) + F/S]

Speedupw/E = 1/[(1-F)+F/S]

10

Big Idea: Amdahl’s Law

Speedup =

Example: the execution time of half of the
program can be accelerated by a factor of 2.
What is the program speed-up overall?

11

Big Idea: Amdahl’s Law

Speedup = 1
(L-F) + F

Non-speed-up part — S Speed-up part

Example: the execution time of half of the
program can be accelerated by a factor of 2.

What is the program speed-up overall?

1 1

05+05 05+025 133

2

12

Example #1: Amdahl’s Law
Speedupw/E= 1/[(1-F)+F/S]

Consider an enhancement which runs 20 times faster but
which is only usable 25% of the time

Speedupw/E = 1/(.75+.25/20) = 1.31

What if its usable only 15% of the time?
Speedup w/ E = 1/(.85+.15/20) = 1.17

Amdahl’s Law tells us that to achieve linear speedup with
100 processors, none of the original computation can be
scalar!

To get a speedup of 90 from 100 processors, the
percentage of the original program that could be scalar
would have to be 0.1% or less

Speedup w/ E = 1/(.001 +.999/100) = 90.99

Speedup

Amdahl’s Law

20.00 —— —
. "]

If the portion of]
18.004 Z

the program that 7 e allel Port

: arallel Portion

16,00} €aN be parallelized // 50%

is small, then the / — 759
14.004 speedup is limited 90%

/ — 95%
12.00 /
10.00 // —
/ —
8.00] The non-parallel]
/ portion limits
6.00 // the performance —
4.00 - /
2=
2.00 ~ —
0.00 , il
— ™ < (00 (e} ™~ <t (00 (o] o™ =r w O ™

Number of Processors

Strong and Weak Scaling

* To get good speedup on a parallel processor while
keeping the problem size fixed is harder than getting

good speedup by increasing the size of the problem.

— Strong scaling: when speedup can be achieved on a

parallel processor without increasing the size of the
problem

— Weak scaling: when speedup is achieved on a parallel
processor by increasing the size of the problem
proportionally to the increase in the number of processors

* Load balancing is another important factor: every
processor doing same amount of work

— Just one unit with twice the load of others cuts speedup
almost in half

Clickers/Peer Instruction

Suppose a program spends 80% of its time in a square root
routine. How much must you speedup square root to make
the program run 5 times faster?

Speedupw/E= 1/[(1-F)+F/S]

A:5

B: 16

C: 20

D: 100

E: None of the above

16

Administrivia
e MT2 is Thursday, April 9th:

— Conflict: Email Sagar by midnight today
— TA Review Session:

 April 4%, 1-3pm, 145 Dwinelle
— Guerrilla Section (caches + FP):

 April 5", 3-5pm, 2" floor Soda labs

— HKN Review Session: (info coming soon)

SIMD Architectures

» Data parallelism: executing same operation
on multiple data streams
« Example to provide context:
— Multiplying a coefficient vector by a data vector
(e.qg., in filtering)
yvii] := cl[i1] x x[1], O = 1 < n
« Sources of performance improvement:

— One instruction is fetched & decoded for entire
operation

— Multiplications are known to be independent
— Pipelining/concurrency in memory access as well

Intel “Advanced Digital Media Boost”

 To improve performance, Intel’s SIMD instructions

— Fetch one instruction, do the work of multiple instructions

Source 1

Source 2

Destination

X3 X2 X1 X0
Y3 Y2 Y1 YO
X3 OP Y3 X2 0P Y2 X1 OP Y1 X0 OP YO

19

First SIMD Extensions:
MIT Lincoln Labs TX-2, 1957

QNE 36 BITAE D
(36)

poe - - - -

@ > O
i | 3
|
i
[
i
1
1

OPERAND WORD 5
STRUCTURE

TWO I8 BIT AE'S D
(18,18)

c
A
B

OPERAND WORD
.STRUCTURE

ONE 27 BIT& D
ONE 9 BIT AE C
(27,9) A
B

OPERAND WORD
STRUCTURE

b - - - - -

FOUR 9 BIT AE'S D
(99,99) ¢ . 77

A
B

OPERAND WORD
STRUCTURE

bk - - - .-

20

Intel SIMD Extensions

* MMX 64-bit registers, reusing floating-point
registers [1992]
* SSE2/3/4, new 128-bit registers [1999]

* AVX, new 256-bit registers [2011]
— Space for expansion to 1024-bit registers

21

XMM Registers

127 0

XMM7

XMM6

XMMS

XMM4

XMM3

XMM2

XMM1

XMMO

* Architecture extended with eight 128-bit data registers:
XMM registers

— x86 64-bit address architecture adds 8 additional registers
(XMM8 — XMM15)

Intel Architecture SSE2+
128-Bit SIMD Data Types

* Note: in Intel Architecture (unlike MIPS) a word is 16 bits
— Single-precision FP: Double word (32 bits)
— Double-precision FP: Quad word (64 bits)

Fundamental 128-Bit Packed SIMD Data Types

I | I I_I I I I | Packed Bytes

127 122121 9695 8079 6463 4847 3231 1615 0 16 / 128 bits

I I I I I | Packed Words

127 122121 9695 8079 6463 4847 3231 1615 o 8/128bits

| I | Packed Doublewords
127 96 95 64 63 3231 0 4/128bits

I Packed Quadwords

127 64 63 0 2 / 128 bits

SSE/SSE2 Floating Point Instructions

Move
does
both
load
and
store

Datatransfer | Arithmetic | Compare

MOV{A/U}{SS/PS/SD/ ADD{SS/PS/SD/PD} xmm, CMPLSS/PS/ISDY
PD} xmm, mem/xmm mem/ Xmm PD]
SUB{SS/PS/SD/PD} xmm,
mem/xmm
MOV {H/L} {PS/PD} MUL{SS/PS/SD/PD} xmm,
Xmm, mem/xmm mem/ xmm
DIV{SS/PS/SD/PD} xmm,
mem/ xmm
SQRT{SS/PS/SD/PD} mem/xmm
MAX {SS/PS/SD/PD} mem/xmm
MIN{SS/PS/SD/PD} mem/xmm

xmm: one operand is a 128-bit SSE2 register

mem/xmm: other operand is in memory or an SSE2 register

{SS} Scalar Single precision FP: one 32-bit operand in a 128-bit register

{PS} Packed Single precision FP: four 32-bit operands in a 128-bit register
{SD} Scalar Double precision FP: one 64-bit operand in a 128-bit register
{PD} Packed Double precision FP, or two 64-bit operands in a 128-bit register
{A} 128-bit operand is aligned in memory

{U} means the 128-bit operand is unaligned in memory

{H} means move the high half of the 128-bit operand

{L} means move the low half of the 128-bit operand

24

Packed and Scalar Double-Precision
Floating-Point Operations

X1 X0
Y1 YO
i i i i Packed
X1 OP Y1 X0 OP Y0
X1 X0
Y1 YO

Scalar
Y

X1 X0 OP YO

Example: SIMD Array Processing

for each £ in array
f = sqrt(f)

for

{

(for

each £ in

load £ to
calculate
write the

each 4 members in array A

load 4 members to the SSE register

calculate
store the

array

the floating-point register
the square root
result from the register to memory

4 square roots in one operation >
4 results from the register to memory

SIMD style)

26

Data-Level Parallelism and SIMD

SIMD wants adjacent values in memory that
can be operated in parallel

Usually specified in programs as loops
for (i=1000; i>0; i=i-1)
x[1] = x[1] + s;
How can reveal more data-level parallelism
than available in a single iteration of a loop?
Unroll loop and adjust iteration rate

27

Looping in MIPS

Assumptions:

- Stlis initially the address of the element in the array with the highest
address

- SfO contains the scalar value s
- 8(St2) is the address of the last element to operate on

CODE:

Loop: 1. I.d Sf2,0(St1) ; Sf2=array element
2.add.d Sf10,5f2,Sf0 :add s to Sf2
3.s.d Sf10,0(St1) ; store result
4.addui St1,5t1,#-8 ; decrement pointer 8 byte

5. bne St1,St2,Loop ;repeat loop if St1 != St2

28

Loop:

l.d
add.d

l.d
add.d

l.d
add.d
s.d

l.d
add.d
s.d
addui
bne

Loop Unrolled

$2,0($t1)

$f10,5f2,$f0 NOTE:

$£10,0($t1) 1. Only 1 Loop Overhead every 4 iterations
$f4,-8(St1) 2. This unrolling works if

$£12,$4,5f0 loop_limit(mod 4) =0

3. Using different registers for each iteration

f12,-8(5t1 R L
> (>t1) eliminates data hazards in pipeline

$f6,-16(St1)
$f14,516,5f0
$f14,-16(5t1)
$£8,-24(5t1)
$f16,5f8,5f0
$f16,-24(St1)
St1,5t1,#-32
St1,5t2,Loop

29

Loop:l.d
l.d
l.d
l.d
add.d
add.d
add.d
add.d
s.d
s.d
s.d
s.d
addui
bne

Loop Unrolled Scheduled

$£2,0(St1)

5f4,-8(>t1) \4L ds side-by-side: Could replace with 4-wid
$f6,-16(5t1) anda s side-by-side: Could replace with 4-wide SIMD
$f8,-24(5t1)

$f10,5f2,5f0

$f12,5f4,5f0
$f14,$f6,$f0 4 Adds side-by-side: Could replace with 4-wide SIMD Add

$f16,$f8,$f0/

$f10,0(St1)

5f12,-8(>1) >St ide-by-side: Could repl ith 4-wide SIMD S
$f14,-16(St1) ores side-by-side: Could replace with 4-wide tore

$f16,-24(St1
St1,5t1,#-32
$t1,5t2,Loop

30

Loop Unrolling in C

* |nstead of compiler doing loop unrolling, could do it

yourself in C

for (1i=1000;

x[1i] + s;

 Could be rewritten What is downside of doing it in C?
for (1=1000;

x[1] =

x[1]
x[1-1]
x[1-2]
x[1-3]
}

i>0; i=i-1)

1>0; 1i=i-4) {
x[1i] + s;
x[i-1] + s;
x[1-2] + s;

= x[1-3] + s;

Generalizing Loop Unrolling

* Aloop of n iterations
* k copies of the body of the loop
e Assuming (n mod k) #0

Then we will run the loop with 1 copy of the
body (n mod k) times and with k copies of the
body floor(n/k) times

32

Example: Add Two Single-Precision
Floating-Point Vectors

Computation to be performed:

vec res.xXx = vl.x + v2.x; .
— I - mov a ps: move from mem to XMM register,
vee_res.y = vi.y T ve.yi memory aligned, packed single precision
vec res.z = vl.z + v2.z;
vec res.w = vl.w + v2.w; add ps: add from mem to XMM register,

packed single precision

mov a ps: move from XMM register to mem,
memory aligned, packed single precision

(Note: Destination on thé right in x86 assembly)
movaps address-of-vl, %x
// vli.w | vl.
addps address-of-v2, %x
/] v1.w+v2.w |

movaps %xmm0, address-of-Vec res

SSE Instruction Sequence:

l.y | vl.x => xmm0

l.z+v2.z | vi.y+v2.y | vl.x+v2.x => xmm0

33

In The News: Intel to buy Altera?

Altera is 2"9 biggest FPGA maker after Xilinx
— FPGA (Field-Programmable Gate Array)

Altera already has fabrication deal to use
Intel’s 14nm technology

Intel experimenting with FPGA next to server
processor

Microsoft to use programmable logic chips to
accelerate Bing search engine

34

Intel SSE Intrinsics

* Intrinsics are C functions and procedures for
inserting assembly language into C code, including
SSE instructions

— With intrinsics, can program using these instructions
indirectly

— One-to-one correspondence between SSE instructions and
intrinsics

35

Example SSE Intrinsics

Instrinsics: Corresponding SSE instructions:
* Vector data type:
~m128d
* Load and store operations:
~_mm_load_pd MOVAPD/aligned, packed double
_mm_store_pd MOVAPD/aligned, packed double
_mm_loadu_pd MOVUPD/unaligned, packed double
_mm_storeu_pd MOVUPD/unaligned, packed double
* Load and broadcast across vector
_mm_loadl pd MOVSD + shuffling/duplicating
* Arithmetic:
_mm_add_pd ADDPD/add, packed double

_mm_mul_pd MULPD/multiple, packed double

Example: 2 x 2 Matrix Multiply

Definition of Matrix Multiply:)

Cij = (AxB);, =|<Z 1A 1 B

Arq A, B, B, Cy179A1,1B1a A1oBy s C;,=A1 1B ,+A 5B,
X =

Az A, By B, C;17A21B1 1|t Ay 2Bo s C,2=A;1B1,1A; 5B, 5

1 0 1 3 C,,=1%1+0%2=1 C,,=1*3+0*4 =3
X =

0 1 2 4 Cpy= 0%1 + 1%2=2 C,,=0*3+1%4=4

Example: 2 x 2 Matrix Multiply

* Using the XMM registers
— 64-bit/double precision/two doubles per XMM reg

Cl Cl 1 : C2 1
’ 1 ’ . .
. Stored in memory in Column order
G, Cip] C
’ 1 ’
)
. Cl : 1 C]_ 72
B Cyy C
Lo 2,2 |
: ./
B, Bi,l | Bi,l C
B B i B 1 Cz
2 i,2 . i,2

Example: 2 x 2 Matrix Multiply

e |nitialization

c, 0 0
c, 0 T 0

Example: 2 x 2 Matrix Multiply

A1,1 A1,2 Bl,2 C1,1= A1,1B1,1 t Al,ZBZ,l C1,2=A1,1Bl,2+A1,sz,2
o I n iti a I iZ a ti O n Asa Ara By1 B,. Co1FA21B1 .+ Ay2By sy Cy27A1B1 %A, 5By,
C, 0 i 0
C, 0 i 0
e | =1
A A, : A, . _mm_load_pd: Load 2 doubles into XMM
: ' reg, Stored in memory in Column order
B, B, , i B, _mm_load1 pd: SSE instruction that loads
5 = - 2 ' a double word and stores it in the high and
2 12 : 1,2 low double words of the XMM register

(duplicates value in both halves of XMM)

Example: 2 x 2

* First iteration intermediate result

1,1

A2,1

A1,2

A2,2

O+A; By, i 0+A, B,
O+A;1B;; i 0+A, B,
A1 i A4
B, i B,

B, i B,

Matrix Multiply

1,1 B, Cy13AL1B1af AL2By C17A11B12+A15By

B,1 B> Cy17A,1B1alt AynBy 4 C,,=A;1B1 1A, 5By 5

cl=_mm_add_pd(cl, mm_mul_pd(a,bl));
c2=_mm_add_pd(c2, mm_mul _pd(a,b2));
SSE instructions first do parallel multiplies
and then parallel adds in XMM registers

~mm_load _pd: Stored in memory in
Column order

_mm_load1 pd: SSE instruction that loads

a double word and stores it in the high and
low double words of the XMM register
(duplicates value in both halves of XMM)

Example: 2 x 2 Matrix Multiply

* First iteration intermediate result

1,1

A2,1

1,2

O+A; By, i 0+A, B,
O+A;1B;; i 0+A, B,
A1,2 i Az,z
B, i B,
B,, i B,,

11 By, Cy13A11B1a Ci57A,1B1,tA 5By

Bz,z C2,1= A2,1B1,1

C,27A,1B121A; 5By,

cl=_mm_add_pd(cl, mm_mul_pd(a,bl));
c2=_mm_add_pd(c2, mm_mul _pd(a,b2));
SSE instructions first do parallel multiplies
and then parallel adds in XMM registers

~mm_load _pd: Stored in memory in
Column order

_mm_load1 pd: SSE instruction that loads

a double word and stores it in the high and
low double words of the XMM register
(duplicates value in both halves of XMM)

Example: 2 x 2 Matrix Multiply

e Second iteration intermediate result
C1,1 C2,1

C; |Ay1B11tA By i A;1B11tA; 5B, cl=_mm_add _pd(cl, mm_mul_pd(a,bl));

C, |A11B1otAL By, i A, 1B1,1A; 5B, c2 =_mm_add_pd(c2,_mm_mul_pd(a,b2));
C ' ’C — SSE instructions first do parallel multiplies
V2 #? and then parallel adds in XMM registers

A A, H A,, _mm_load_pd: Stored in memory in
: : Column order

B, B, . i B, , _mm_load1 pd: SSE instruction that loads
3 5 . = : a double word and stores it in the high and
2 2,2] 2,2 low double words of the XMM register

(duplicates value in both halves of XMM)

Example: 2 x 2 Matrix Multiply

Definition of Matrix Multiply:)

Cij = (AxB);, =|<Z 1A 1 B

Arq A, B, B, Cy179A1,1B1a A1oBy s C;,=A1 1B ,+A 5B,
X =

Az A, By B, C;17A21B1 1|t Ay 2Bo s C,2=A;1B1,1A; 5B, 5

1 0 1 3 C,,=1%1+0%2=1 C,,=1*3+0*4 =3
X =

0 1 2 4 Cpy= 0%1 + 1%2=2 C,,=0*3+1%4=4

Example: 2 x 2 Matrix Multiply
(Part 1 of 2)

#include <stdio.h>
// header file for SSE compiler intrinsics
#include <emmintrin.h>

// NOTE: vector registers will be represented in
commentsasvl=[a [b]

// where v1 is a variable of type __m128d and
a, b are doubles

int main(void) {
// allocate A,B,C aligned on 16-byte boundaries
double A[4] _ attribute__ ((aligned (16)));
double B[4] __ attribute__ ((aligned (16)));
double C[4] __ attribute__ ((aligned (16)));
int Ida = 2;
inti=0;
// declare several 128-bit vector variables
. m128dcl,c2,a,bl,b2;

// Initialize A, B, C for example
J¥A= (note column order!)
10
01
*/
A[0] =1.0; A[1]=0.0; A[2]=0.0; A[3]=1.0;

/*¥B= (note column order!)
13
24
*/
B[0] =1.0; B[1] =2.0; B[2] =3.0; B[3] =4.0;

/¥C= (note column order!)
00
00
*/
C[0] =0.0; C[1] =0.0; C[2] =0.0; C[3] =0.0;

Example: 2 x 2 Matrix Multiply

// used aligned loads to set
//cl=[c 11 [c 21]
cl=_mm_load_pd(C+0*Ida);
//c2=[c 12 [c 22]
c2 =_mm_load_pd(C+1*Ida);

for(i=0;i<2;i++){
/*a=
i=0:[a_11]a 21]
i=1:[a 12 [a_22]
*/
a=_mm_load_pd(A+i*Ida);
/*bl =
i=0:[b 11 [b_11]
i=1:[b 21 [b_21]
*/
bl=_mm_loadl pd(B+i+0*Ida);
/*¥b2 =
i=0:[b 12 | b_12]
i=1:[b 22| b_22]
*/
b2 = _mm_loadl pd(B+i+1*Ida);

(Part 2 of 2)

/*cl=
i=0:[c 11+a 11*b 11 |c 21+a 21*b 11]
i=1:[c 11+a 21*b 21| c 21+a 22*b 21]
*
/
cl=_mm_add_pd(cl,_mm_mul_pd(a,bl));
/*¥c2=
i=0:[c 12+a_11*b 12 [c 22 +a_21*b_12]
i=1:[c 12+a 21*b 22 [c 22 +a_22*b_22]
*
/
c2=_mm_add_pd(c2,_mm_mul_pd(a,b2));

// store c1,c2 back into C for completion
_mm_store_pd(C+0*Ida,cl);
_mm_store_pd(C+1*Ida,c2);

// print C
printf("%g,%g\n%g,%g\n",C[0],C[2],C[1],C[3]);
return O;

Inner loop from gcc -0 -S

L2: movapd
movddup
mulpd
addpd
movddup
mulpd
addpd
addqg
addqg
cmpq
jne
movapd
movapd

(%rax,%rsi), %xmm1 //Load aligned A[i,i+1]->m1

(%rdx), %xmmO
%xmm1l, %xmm0O
%xXmmO0, %xmm3
16(%rdx), %xmm0
%xmm0O0, %xmm1l
%xmm1l, %xmm?2
S16, %rax

S8, %rdx

S32, %rax

L2

%xmm3, (%rcx)
%xmm?2, (%rdi)

//Load BJj], duplicate->m0
//Multiply m0O*m1->mO

//Add mO+m3->m3

//Load B[j+1], duplicate->mO
//Multiply m0O*m1->m1

//Add m1+m2->m?2

// rax+16 -> rax (i+=2)

// rdx+8 -> rdx (j+=1)

// rax == 327

// jump to L2 if not equal
//store aligned m3 into C[k,k+1]
//store aligned m2 into C[l,I+1]

And in Conclusion, ...

Amdahl’s Law: Serial sections limit speedup
Flynn Taxonomy

Intel SSE SIMD Instructions
— Exploit data-level parallelism in loops

— One instruction fetch that operates on multiple
operands simultaneously

— 128-bit XMM registers
SSE Instructions in C

— Embed the SSE machine instructions directly into C
programs through use of intrinsics

— Achieve efficiency beyond that of optimizing compiler

