cselc:
Great Ideas in Computer Architecture
Virtual Memory

Instructors:
Krste Asanovic & Vladimir Stojanovic
http://inst.eecs.berkeley.edu/~cs61c/

4/21/15

Review

Programmed 1/0
* Polling versus Interrupts

* Asynchronous interrupts versus synchronous
traps

Precise interrupt looks like execution stopped
at exactly one instruction, every instruction
before finished, no instruction after started.
— Simplify software view of interrupted state

You Are Herel!

Software Hardware
Parallel Requests N
Assigned to computer Ware Socuaslz gr:réanré

e.g., Search “Katz” Computer

Harness
Parallel Threads  p oirelism & Today’s
Assigned to core

Achieve High g
e.g., Lookup, Ads Lecture

e Compute‘r\ Seanl

Performance
Parallel Instructions w7 Core X,
>1 instruction @ one time % Memory __- - (Cache) \\\
e.g., 5 pipelined instructions Input/Output \\\
Parallel Data — Core >
>1 data item @ one time truction Unit(s) /- Funcnonal//

Unit(s)
e.g., Add of 4 pairs of words A

Hardware descriptions

Main Memory

All gates @ one time L )
Programming Languagesl LD Logic Gates
p

Traps/Interrupts/Execeptions.

altering the normal flow of control

trap

program handler

An external or internal event that needs to be processed by
another (system) program. The event is usually unexpected or
rare from program’s point of view.

Terminology

In CS61C (you'll see other definitions in use elsewhere):
 Interrupt — caused by an event external to current
running program (e.g. key press, mouse activity)
— Asynchronous to current program, can handle interrupt on
any convenient instruction
* Exception — caused by some event during execution of
one instruction of current running program (e.g., page
fault, illegal instruction)
— Synchronous, must handle exception on instruction that
causes exception
« Trap — action of servicing interrupt or exception by
hardware jump to “trap handler” code

Precise Traps

* Trap handler’s view of machine state is that every
instruction prior to the trapped one has completed, and
no instruction after the trap has executed.

* Implies that handler can return from an interrupt by
restoring user registers and jumping to EPC

— Interrupt handler software doesn’t need to understand the
pipeline of the machine, or what program was doing!

— More complex to handle trap caused by an exception

* Providing precise traps is tricky in a pipelined superscalar
out-of-order processor!
— But handling imprecise interrupts in software is even worse.




4/21/15

Trap Handling in 5-Stage Pipeline

Data
Mem

Inst.

Mem Decode

Data address

PC address Illegal
Exceptions

Exception Opcode

— Asynchronous Interrupts

* How to handle multiple simultaneous
exceptions in different pipeline stages?

* How and where to handle external
asynchronous interrupts?

Save Exceptions Until Commit

Commit.
Point:
Inst. Datai
Mem Decode Memi
PC address glegacll Overflow |Data addreds
Exception pcode Exceptions

Cause

EK!’/I
riteback

Select 7
Handler Kill Fl I Kill DI I Kill E] IASY”C"W”OUs
Py Stage e

Stage’ Stag: Interrupts

Handling Traps in In-Order Pipeline

* Hold exception flags in pipeline until commit point (M
stage)

* Exceptions in earlier pipe stages override later
exceptions for a given instruction

* Inject external interrupts at commit point (override
others)

« If exception/interrupt at commit: update Cause and EPC
registers, kill all stages, inject handler PC into fetch
stage

Trap Pipeline Diagram

time
t0 t1 t2 t3 t4 t5 t6 t7
(1,) 096: ADD IF, 1D, EX; MA;~- overflow!
(I,) 100: XOR IF, ID, Exzk- -
(I3) 104: suB IF; ID3\- - -
(I,) 108: ADD IF, - - - -
(I.) Trap Handler code IFs ID; EXg MAg WBg

Virtual Memory

“Bare” 5-Stage Pipeline

Data
Cache

Inst.

Cache Decode

Physical Memory Controller

Address

Physical
Address
Physical Address

[ Main Memory (DRAM) |

* In a bare machine, the only kind of address
is a physical address




4/21/15

Dynamic Address Translation

Motivation
In early machines, I/O operations were slow and

each word transferred involved the CPU
Higher throughput if CPU and I/O of 2 or more
programs were overlapped.
How?= multiprogramming with DMA 1I/O
devices, interrupts
Location-independent programs
Programming and storage management ease

= need for a base register
Protection

Independent programs should not affect

each other inadvertently

= need for a bound register
Multiprogramming drives requirement for
resident supervisor (operating system)
software to manage context switches
between multiple programs 1

Physical Memory

Simple Base and Bound Translation

Segment Length

Bounds
Violation?

Physical
Address

Load X

Address

Physical Memory

Program
Address
Space

Base and bounds registers are visible/accessible only
when processor is running in supervisor mode

SeHarate Areas for Program and Data

(Scherne used on all Cray vector superconTputers prior to X1, 2002)
.

Violation?

Load X ng
z
Physical S
Address UEJ
>
N £
Program s
Address Violation?
Space

Program Counter Ly
[reeemcorer s

CJ Address
What is an advantage of this separation?

Base and Bound Machine

Bounds Violation?

Bounds Violation?

Logical
Address

Logical
Address

Decode

Address

Physical
Address

Physical
|Address

Memory Controller

Physical Address

[ Mmain Memory (oRAM) |

[ Can fold addition of base register into (register+immediate) address
calculation using a carry-save adder (sums three numbers with only a few
gate delays more than adding two numbers) ]

16

Memory Fragmentation

Users 4 & 5 Users 2 & 5
arrive leave
user user 1
user
user 4
user 4

As users come and go, the storage is “fragmented”.
Therefore, at some stage programs have to be moved
around to compact the storage.

Paged Memory Systems

* Processor-generated address can be split into:

¢ A page table contains the physical address of the base of each

page:)
1
0 0 0
1 1 Physical
5 2 emory
3 3 3
Address Space Page Table
of User-1 of User-1 2
Page tables make it possible to store the
pages of a program non-contiguously.




Private Address Space per User

User 1

]

Page Tabl

User 2 gAY |—> “1 g
%
‘ €
o [RERRERN
Page Tabl “W g
ANS E]
User 3 \“‘1 i
‘ RERTRRARE —
v/
Page Table fre
e Each user has a page table
e Page table contains an entry for each user page
19
Page Tables in Physical Memory
T
User
1
PT 7
User ci;
User 1 Virtual 7 qE)
Address Space =
g
2
=
o
0
User 2 Virtual
Address Space %%
2

Midterm 2 Distribution

MINMUM MEDIAN

00 255

STDDEV

MAXIMUM

435 412 187

4/21/15

Where Should Page Tables Reside?

* Space required by the page tables (PT) is proportional
to the address space, number of users, ...
= Too large to keep in registers inside CPU

* Idea: Keep PTs in the main memory

— needs one reference to retrieve the page base address and
another to access the data word

=> doubles the number of memory references!

Administrivia
* Midterm 2 scores up:
— Regrade request deadline is 23:59:59 on Sunday
April 26t
* Clobber Policy:
— Final composed of MT1, MT2, post-MT2 sections
— z-scores on MT1/MT2 sections of Final compared
to MT1/MT2 grades, will replace if better
* Proj4-1 due date extended to Wed, April 29

CS61C In the News:

“Moore’s Law 50 Years Anniversary!”

V4 Gordon Moore’s paper appeared in 19 April
1965 issue of Electronics.

\,
\,

e “With unit cost falling as the number of
7 components per circuit rises, by 1975 economics
may dictate squeezing as many as 65,000
B components on a single silicon chip.”

C=—NUANDNDO

LOG, OF THE NUMBER OF
COMPONENTS PER INTEGRATED FUNCTION

The image cannot be displayed. Your computer may not
Sl oo shar iyl oo srose ) have enough memory to open the image, or the image
extrapolated ve time. may have been corrupted. Restart your computer, and
then open the file again. If the red x still appears, you
may have to delete the image and then insert it again.

2




4/21/15

Demand Paging in Atlas (1962)

“A page from secondary
storage is brought into the
primary storage whenever
it is (implicitly) demanded
by the processor.”

Tom Kilburn Primary
32 Pages

512 words/page

Primary memory as a cache

for secondary memory Secondary

Central (Drum)
User sees 32 x 6 x 512 words Memory 32x6 pages
of storage

Hardware Organization of Atlas
Address | Initial (not swapped)
Address gsystem data
LDecode] PARs (not swapped)
48-bit words 0

decks
1 Page Address " 88 sec/
Register (PAR
pergpage f(rame? <effective PN , status> word

Compare the effective page address against all 32 PARs
match = normal access
no match = page fault
save the state of the partially executed
instruction

Atlas Demand Paging Scheme

* On a page fault:

— Input transfer into a free page is initiated

— The Page Address Register (PAR) is updated

— If no free page is left, a page is selected to be replaced
(based on usage)

— The replaced page is written on the drum

* to minimize drum latency effect, the first empty
page on the drum was selected

— The page table is updated to point to the new location

of the page on the drum

Linear Page Table

* Page Table Entry (PTE) Page Table
contains:
— A bit to indicate if a page
exists
PPN (physical page number)
for a memory-resident page
DPN (disk page number) for
a page on the disk
— Status bits for protection
and usage
« OS sets the Page Table Base
Register whenever active
user process changes

PT Base Register] [VPN Offset

Virtual address

Size of Linear Page Table

With 32-bit addresses, 4-KB pages & 4-byte PTEs:
= 220 PTEs, i.e, 4 MB page table per user
=> 4 GB of swap needed to back up full virtual address
space

Larger pages?
¢ Internal fragmentation (Not all memory in page is used)
o Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
* Even 1MB pages would require 2% 8-byte PTEs (35 TB!)

What is the “saving grace” ?

Hierarchical Page Table

Virtual Address
31 2221 1211 0

10-bit  10-bit
L1 index L2 index

-
Root of the Current === 5]
Page Table _ g
=
©
(Processor Level 1 @
Register) Page Table _E
Level 2
page in primary memory Page Tables

page in secondary memory

A PTE of istent
ez of a nonexistent page Data Pages




4/21/15

Two-Level Page Tables in Physical
Memory Physical

Virtual Memory
Address
Spaces Level 1 PT
[AARRRR ] User 1
Level 1 PT
MUser 2

Level 2 PT
User 2

Address Translation & Protection

Virtual Address [Virtual Page No. (VPN) | offset |

Kernel/User Mode

Read/Write

Exception?
Physical Address [Physical Page No. (PPN) |[offset |

« Every instruction and data access needs address
translation and protection checks

A good VM design needs to be fast (~ one cycle) and
space efficient

Translation Lookaside Buffers (TLB)

Address translation is very expensive!
In a two-level page table, each reference
becomes several memory accesses

Solution: Cache translations in TLB
TLB hit = Single-Cycle Translation
TLB miss = Page-Table Walk to refill

virtual address VPN offse

VIR W[D| tag PPN (VPN = virtual page number)

(PPN = physical page number)

hit?  physical address

TLB Designs

Typically 32-128 entries, usually fully associative

— Each entry maps a large page, hence less spatial locality across
pages =» more likely that two entries conflict

— Sometimes larger TLBs (256-512 entries) are 4-8 way set-
associative
— Larger systems sometimes have multi-level (L1 and L2) TLBs
* Random or FIFO replacement policy
No process information in TLB?
TLB Reach: Size of largest virtual address space that can be
simultaneously mapped by TLB

Example: 64 TLB entries, 4KB pages, one page per entry

TLB Reach =

VM-related events in pipeline

Inst | | Inst. Data | | Data
Cache Decode TLB []Cache

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?

* Handling a TLB miss needs a hardware or
software mechanism to refill TLB
— usually done in hardware now

* Handling a page fault (e.g., page is on disk) needs
a precise trap so software handler can easily
resume after retrieving page

* Handling protection violation may abort process

Hierarchical Page Table Walk:
SPARC v8

Virtual Address |Index 1 | Index 2 | Index 3 |
31 23 17 11

Context| Context Tabl|

Table

Registe L1 Table

Context roat ot

Registe L2 Table

PTP L3 Table

PTP

31 11 4o
Physical Address | PPN [ offset |

Offset |
0

MMU does this table walk in hardware on a TLB miss




Page-Based Virtual-Memory Machine

(Hardware Page-Table Walk)

Page Fault? Page Fault?
Protection violation? Protection violation?
Virtual Virtual
Address Physical Address Physical
IAddress \ IAddress
Inst. Decode Data _L Data
TLB TLB Cache
Miss?

Hardware Page
Table Walker

Physical Physical
Address Memory Controller ‘Address

Physical Address

| Main Memory (DRAM) |

* Assumes page tables held in untranslated physical memory

4/21/15

Where?

Address Translation:
putting it all together
VirtuallAdd ress

Bl hardware
I hardware or software
[] software

hit

denied permitted

Protection Physical

Fault Address
(to cache)

SEGFAULT

Modern Virtual Memory Systems
lllusion of a large, private, uniform store

Protection & Privacy oS
several users, each with their private
address space and one or more
shared address spaces

page table = name space

Demand Paging
Provides the ability to run programs
larger than the primary memory

Hides differences in machine
configurations

The price is address translation on i
each memory reference VA |Mapping | pa

VM features track historical uses:

Bare machine, only physical addresses
— One program owned entire machine
Batch-style multiprogramming
— Several programs sharing CPU while waiting for 1/0
— Base & bound: translation and protection between programs (not virtual
memory)
— Problem with external fragmentation (holes in memory), needed
occasional memory defragmentation as new jobs arrived
Time sharing
— More interactive programs, waiting for user. Also, more jobs/second.
— Motivated move to fixed-size page translation and protection, no external
fragmentation (but now internal fragmentation, wasted bytes in page)
— Motivated adoption of virtual memory to allow more jobs to share limited
physical memory resources while holding working set in memory
Virtual Machine Monitors
— Run multiple operating systems on one machine
— Idea from 1970s IBM mainframes, now common on laptops
+ e.g., run Windows on top of Mac 0S X
— Hardware support for two levels of translation/protection
* Guest OS virtual -> Guest OS physical -> Host machine physical
— Also basis of Cloud Computing
+ Virtual machine instances for Project 4




