CS 61C:

Great Ideas in Computer Architecture Dependability and RAID

Instructors:

Krste Asanovic & Vladimir Stojanovic http://inst.eecs.berkeley.edu/~cs61c/

Last time:

- I/O gives computers their 5 senses
- I/O speed range is 100-million to one
- · Polling vs. Interrupts
- DMA to avoid wasting CPU time on data transfers
- Disks for persistent storage, replaced by flash
- Networks: computer-to-computer I/O
 - Protocol suites allow networking of heterogeneous components. Abstraction!!!

Great Idea #6:
Dependability via Redundancy

Redundancy so that a failing piece doesn't

make the whole system fail

Great Idea #6: Dependability via Redundancy

- Applies to everything from datacenters to memory
 - Redundant datacenters so that can lose 1 datacenter but
 Internet service stays online
 - Redundant routes so can lose nodes but Internet doesn't fail
 - Redundant disks so that can lose 1 disk but not lose data (Redundant Arrays of Independent Disks/RAID)
 - Redundant memory bits of so that can lose 1 bit but no data (Error Correcting Code/ECC Memory)

Dependability

Dependability via Redundancy: Time vs. Space

- Spatial Redundancy replicated data or check information or hardware to handle hard and soft (transient) failures
- Temporal Redundancy redundancy in time (retry) to handle soft (transient) failures

Dependability Measures

- Reliability: Mean Time To Failure (MTTF)
- Service interruption: Mean Time To Repair (MTTR)
- Mean time between failures (MTBF)
 - MTBF = MTTF + MTTR
- Availability = MTTF / (MTTF + MTTR)
- · Improving Availability
 - Increase MTTF: More reliable hardware/software + Fault Tolerance
 - Reduce MTTR: improved tools and processes for diagnosis and repair

Availability Measures

- Availability = MTTF / (MTTF + MTTR) as %
 MTTF, MTBF usually measured in hours
- Since hope rarely down, shorthand is "number of 9s of availability per year"
- 1 nine: 90% => 36 days of repair/year
- 2 nines: 99% => 3.6 days of repair/year
- 3 nines: 99.9% => 526 minutes of repair/year
- 4 nines: 99.99% => 53 minutes of repair/year
- 5 nines: 99.999% => 5 minutes of repair/year

Reliability Measures

- Another is average number of failures per year: Annualized Failure Rate (AFR)
 - E.g., 1000 disks with 100,000 hour MTTF
 - 365 days * 24 hours = 8760 hours
 - (1000 disks * 8760 hrs/year) / 100,000 = 87.6 failed disks per year on average
 - -87.6/1000 = 8.76% annual failure rate
- Google's 2007 study* found that actual AFRs for individual drives ranged from 1.7% for first year drives to over 8.6% for three-year old drives

*research.google.com/archive/disk_failures.pdf

Dependability Design Principle

- · Design Principle: No single points of failure
 - "Chain is only as strong as its weakest link"
- · Dependability Corollary of Amdahl's Law
 - Doesn't matter how dependable you make one portion of system
 - Dependability limited by part you do not improve

Error Detection/Correction Codes

- Memory systems generate errors (accidentally flipped-bits)
 - DRAMs store very little charge per bit
 - "Soft" errors occur occasionally when cells are struck by alpha particles or other environmental upsets
 - "Hard" errors can occur when chips permanently fail.
 - Problem gets worse as memories get denser and larger
- Memories protected against failures with EDC/ECC
- Extra bits are added to each data-word
 - Used to detect and/or correct faults in the memory system
 - Each data word value mapped to unique code word
 - A fault changes valid code word to invalid one, which can be detected

Block Code Principles

- Hamming distance = difference in # of bits
- p = 011011, q = 001111, Ham. distance (p,q) = 2
- p = 011011, q = 110001, distance (p,q) = ?
- Can think of extra bits as creating a code with the data
- What if minimum distance between members of code is 2 and get a 1-bit error?

Richard Hamming, 1915-

Parity: Simple Error-Detection Coding

 Each data value, before it is written to memory is "tagged" with an extra bit to force the stored word to have even parity:

Each word, as it is read from memory is "checked" by finding its parity (including the parity bit).

- Minimum Hamming distance of parity code is 2
- A non-zero parity indicates an error occurred:
 - 2 errors (on different bits) are not detected
 - nor any even number of errors, just odd numbers of errors are detected

Parity Example

- Data 0101 0101
- 4 ones, even parity now
- Write to memory: 0101 0101 0 to keep parity even
- Data 0101 0111
- 5 ones, odd parity now
- Write to memory: 0101 0111 1 to make parity even
- Read from memory 0101 0101 0
- 4 ones => even parity, so no error
- Read from memory 1101 0101 0
- 5 ones => odd parity, so error
- What if error in parity bit?

Suppose Want to Correct 1 Error?

- Richard Hamming came up with simple to understand mapping to allow Error Correction at minimum distance of 3
 - Single error correction, double error detection
- Called "Hamming ECC"
 - Worked weekends on relay computer with unreliable card reader, frustrated with manual restarting
 - Got interested in error correction; published 1950
 - R. W. Hamming, "Error Detecting and Correcting Codes," The Bell System Technical Journal, Vol. XXVI, No 2 (April 1950) pp 147-160.

Detecting/Correcting Code Concept

Space of possible bit patterns (2^N)

.. ר

Error changes bit pattern to non-code

0

Sparse population of code words $(2^M \ll 2^N)$ - with identifiable signature

- Detection: bit pattern fails codeword check
- Correction: map to nearest valid code word

Administrivia

- Final Exam
 - FRIDAY, MAY 15, 2015, 7-10P
 - Location: 1 PIMENTEL
 - Must notify Sagar of conflicts by Wed, 4/29 @ 23:59:59
 - THREE cheat sheets (MT1,MT2, post-MT2)
- Review Sessions:
 - TA: May 6, 2-5pm, 105 Stanley
 - HKN: May 4, 4:30-7:30, HP Auditorium
- Normal OH during RRR Week, info about finals week to follow

Hamming Error Correction Code

- Use of extra parity bits to allow the position identification of a single error
- 1. Mark all bit positions that are powers of 2 as parity bits (positions 1, 2, 4, 8, 16, ...)
 - Start numbering bits at 1 at left (not at 0 on right)
- 2. All other bit positions are data bits (positions 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, ...)
- 3. Each data bit is covered by 2 or more parity bits

Hamming ECC

- 4. The position of parity bit determines sequence of data bits that it checks
- Bit 1 (0001₂): checks bits (1,3,5,7,9,11,...)
 Bits with least significant bit of address = 1
- Bit 2 (0010₂): checks bits (2,3,6,7,10,11,14,15,...)
 Bits with 2nd least significant bit of address = 1
- Bit 4 (0100₂): checks bits (4-7, 12-15, 20-23, ...)
 Bits with 3rd least significant bit of address = 1
- Bit 8 (1000₂): checks bits (8-15, 24-31, 40-47,...)
 Bits with 4th least significant bit of address = 1

23

Hamming ECC

- 5. Set parity bits to create even parity for each group
- A byte of data: 10011010
- Create the coded word, leaving spaces for the parity bits:
- __1_001_1010 000000000111 123456789012
- · Calculate the parity bits

Hamming ECC

- Position 1 checks bits 1,3,5,7,9,11 (bold):
 1 0 1 1 0 1 0. set position 1 to a :
 1 0 1 1 0 1 0
- Position 2 checks bits 2,3,6,7,10,11 (bold):
 0?1_001_10. set position 2 to a_:
 0_1_001_1010
- Position 8 checks bits 8,9,10,11,12:
 0 1 1 1 0 0 1 ? 10 10. set position 8 to a _:
 0 1 1 1 0 0 1 _ 10 10

Hamming ECC

- Position 1 checks bits 1,3,5,7,9,11:
 2 1 0 0 1 1 0 1 0. set position 1 to a 0:
 1 0 0 1 1 0 1 0
- Position 2 checks bits 2,3,6,7,10,11:
 0?1_001_1010. set position 2 to a 1:
 011_001_1010
- Position 8 checks bits 8,9,10,11,12:
 0 1 1 1 0 0 1 ? 1 0 1 0. set position 8 to a 0:
 0 1 1 1 0 0 1 0 1 0 1 0

Hamming ECC

- Final code word: <u>01</u>1<u>1</u>001<u>0</u>1010
- Data word: 1 001 1010

Hamming ECC Error Check Suppose receive 011100101110 0 1 1 1 0 0 1 0 1 1 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Bit position **Encoded data** p1 p2 d1 p4 d2 d3 d4 p8 d5 d6 d7 d8 d9 d10 d11 bits x Х х p1 x x x x Χ p2 Χ Parity $X \mid X \mid X \mid X$ Х Χ bit p4 XX

 $\mathbf{X} \mid \mathbf{X} \mid \mathbf{X} \mid \mathbf{X} \mid \mathbf{X} \mid \mathbf{X} \mid \mathbf{X} \mid \mathbf{X}$

coverage

р8

Hamming ECC Error Check

 Suppose receive <u>011100101110</u>

Hamming ECC Error Check

 Implies position 8+2=10 is in error 011100101110

Hamming ECC Error Correct

 Flip the incorrect bit ... 011100101010

Hamming ECC Error Correct

Hamming ECC

- Finding and fixing a corrupted bit:
- Suppose receive 011100101110 123456789012
- Parity 1_, Parity 2_, Parity 4_, Parity 8_ (Bits numbers $xxx1_{two}$, $xx1x_{two}$, $x1xx_{two}$, $1xxx_{two}$)
- Parity bits 2 and 8 incorrect. As 2 + 8 = 10, bit position 10 is location of bad bit: flip value!
- Corrected value: 01110010101010
- Why does Hamming ECC work?

Hamming Error Correcting Code

- Overhead involved in single error-correction code
- Let p be total number of parity bits and d number of data bits in p + d bit word
- If p error correction bits are to point to error bit (p + d cases) + indicate that no error exists (1 case), we need:

```
2^p >= p + d + 1,
thus p >= \log(p + d + 1)
for large d, p approaches \log(d)
• 8 bits data => d = 8, 2^p = p + 8 + 1 => p = 4
```

• 16 data => 5 parity, 32 data => 6 parity,

64 data => 7 parity

Hamming Single-Error Correction, Double-Error Detection (SEC/DED)

 Adding extra parity bit covering the entire word provides double error detection as well as single error correction

1 2 3 4 5 6 7 8

p₁ p₂ d₁ p₃ d₂ d₃ d₄ p₄

• Hamming parity bits H (p_1 p_2 p_3) are computed (even parity as usual) plus the even parity over the entire word, p_4 :

H=0 $p_4=0$, no error

 $\begin{array}{l} H \neq 0 \ p_a = 1, \ correctable \ single \ error \ (odd \ parity \ if \ 1 \ error => \ p_4 = 1) \\ H \neq 0 \ p_a = 0, \ double \ error \ occurred \ (even \ parity \ if \ 2 \ errors => \ p_4 = 0) \end{array}$

H=0 p₄=1, single error occurred in p₄ bit, not in rest of word

Typical modern codes in DRAM memory systems: 64-bit data blocks (8 bytes) with 72-bit code words (9 bytes).

What if More Than 2-Bit Errors?

- Network transmissions, disks, distributed storage common failure mode is bursts of bit errors, not just one or two bit errors
 - Contiguous sequence of B bits in which first, last and any number of intermediate bits are in error
 - Caused by impulse noise or by fading in wireless
 - Effect is greater at higher data rates

20

Cyclic Redundancy Check

- Parity codes not powerful enough to detect long runs of errors (also known as burst errors)
- Better Alternative: Reed-Solomon Codes
 - Used widely in CDs, DVDs, Magnetic Disks
 - RS(255,223) with 8-bit symbols: each codeword contains 255 code word bytes (223 bytes are data and 32 bytes are parity)

- For this code: n = 255, k = 223, s = 8, 2t = 32, t = 16
- Decoder can correct any errors in up to 16 bytes anywhere in the codeword

41

Cyclic Redundancy Check

- For block of k bits, transmitter generates an n-k bit frame check sequence
- Transmits *n* bits exactly divisible by some number
- · Receiver divides frame by that number
 - If no remainder, assume no error
 - Easy to calculate division for some binary numbers with shift register
- Disks detect *and correct* blocks of 512 bytes with called Reed Solomon codes ≈ CRC

43

(In More Depth: Code Types)

- Linear Codes:

 Code is generated by G and in null-space of H
- Hamming Codes: Design the H matrix
 - d = 3 ⇒ Columns nonzero, Distinct
 d = 4 ⇒ Columns nonzero, Distinct, Odd-weight
- · Reed-solomon codes:
 - $-\,$ Based on polynomials in $GF(2^k)$ (I.e. k-bit symbols)
 - Data as coefficients, code space as values of polynomial:
 - P(x)=a₀+a₁x¹+... a_{k-1}x^{k-1}
 - Coded: P(0),P(1),P(2)....,P(n-1)
 - Can recover polynomial as long as get *any* k of n
 - Alternatively: as long as no more than n-k coded symbols erased, can recover data.
- Side note: Multiplication by constant in GF(2^k) can be represented by k×k matrix: a·x
 - Decompose unknown vector into k bits: x=x₀+2x₁+...+2^{k-1}x_{k-1}
 - Each column is result of multiplying a by 2ⁱ

Hamming ECC on your own

- Test if these Hamming-code words are correct. If one is incorrect, indicate the correct code word. Also, indicate what the original data was.
- 110101100011
- 111110001100
- 000010001010

45

Arrays of Small Disks Can smaller disks be used to close gap in performance between disks and CPUs? Conventional: 4 disk designs 3.5" 5.25" 10" 14" Low End High End Disk Array: 1 disk design 3.5" 4

		ks! (1988 Disks) IBM 3.5" 0061	v70	
	IBM 3390K		x70	_
Capacity	20 GBytes	320 MBytes	23 GBytes	
Volume	97 cu. ft.	0.1 cu. ft.	11 cu. ft.	9X
Power	3 KW	11 W	1 KW	3X
Data Rate	15 MB/s	1.5 MB/s	120 MB/s	8X
I/O Rate	600 I/Os/s	55 I/Os/s	3900 IOs/s	6X
MTTF	250 KHrs	50 KHrs	??? Hrs	
Cost	\$250K	\$2K	\$150K	
Disk Arrays	have notential	for large data an	d I/O rates	

RAID: Redundant Arrays of (Inexpensive) Disks

- Files are "striped" across multiple disks
- · Redundancy yields high data availability
 - Availability: service still provided to user, even if some components failed
- · Disks will still fail
- Contents reconstructed from data redundantly stored in the array
 - ⇒ Capacity penalty to store redundant info
 - ⇒ Bandwidth penalty to update redundant info

Redundant Arrays of Inexpensive Disks
RAID 1: Disk Mirroring/Shadowing

recovery
group
e e e

e Each disk is fully duplicated onto its "mirror"
Very high availability can be achieved

Bandwidth sacrifice on write:
Logical write = two physical writes
Reads may be optimized

Most expensive solution: 100% capacity overhead

Redundant Array of Inexpensive Disks RAID 3: Parity Disk 10010011 11001101 10010011 1 1 logical record 0 Striped physical records 0 0 0 P contains sum of 0 other disks per stripe 0 0 1 mod 2 ("parity") Ю 1 0 If disk fails, subtract P from sum of other disks to find missing information

Inspiration for RAID 5 RAID 4 works well for small reads Small writes (write to one disk): Option 1: read other data disks, create new sum and write to Parity Disk Option 2: since P has old sum, compare old data to new data, add the difference to P Small writes are limited by Parity Disk: Write to D0, D5 both also write to P disk

RAID II

- 1990-1993
- Early Network Attached Storage (NAS) System running a Log Structured File System (LFS)
- Impact:

 - \$25 Billion/year in 2002
 Over \$150 Billion in RAID device sold since 1990-2002
 - 200+ RAID companies (at the peak)
 - Software RAID a standard component of modern OSs

And, in Conclusion, ...

- Great Idea: Redundancy to Get Dependability
- Spatial (extra hardware) and Temporal (retry if error)
- Reliability: MTTF & Annualized Failure Rate (AFR)
- Availability: % uptime (MTTF-MTTR/MTTF)
- Memory
 - Hamming distance 2: Parity for Single Error Detect
 - Hamming distance 3: Single Error Correction Code + encode bit position of error
- Treat disks like memory, except you know when a disk has failed—erasure makes parity an Error Correcting
- RAID-2, -3, -4, -5: Interleaved data and parity