CSel1c:
Great Ideas in Computer Architecture
Dependability and RAID

Instructors:
Krste Asanovic & Vladimir Stojanovic
http://inst.eecs.berkeley.edu/~cs61c/

4/28/15

Last time:

1/0 gives computers their 5 senses

1/0 speed range is 100-million to one

Polling vs. Interrupts

DMA to avoid wasting CPU time on data transfers
Disks for persistent storage, replaced by flash
Networks: computer-to-computer /0

— Protocol suites allow networking of heterogeneous
components. Abstraction!!!

Great |dea #6:
Dependability via Redundancy

* Redundancy so that a failing piece doesn’t
make the whole system fail

2 of 3 agree

Great |dea #6:
Dependability via Redundancy

* Applies to everything from datacenters to memory

— Redundant datacenters so that can lose 1 datacenter but
Internet service stays online

— Redundant routes so can lose nodes but Internet doesn’t fail

— Redundant disks so that can lose 1 disk but not lose data
(Redundant Arrays of Independent Disks/RAID)

— Redundant memory bits of so that can lose 1 bit but no data
(Error Correcting Code/ECC Memory)

o

,
FAIL!
Increasing transistor density reduces the cost of redundancy
3
Dependability
@ervice accomplishmenﬂ
Service delivered
as specified
* Fault: failure of a
component
Restoration Failure — May or may not lead to

system failure

Service interruption
Deviation from

specified service

Dependability via Redundancy:
Time vs. Space
* Spatial Redundancy — replicated data or check

information or hardware to handle hard and
soft (transient) failures

* Temporal Redundancy — redundancy in time
(retry) to handle soft (transient) failures

Dependability Measures

* Reliability: Mean Time To Failure (MTTF)
* Service interruption: Mean Time To Repair (MTTR)
* Mean time between failures (MTBF)
— MTBF = MTTF + MTTR
* Availability = MTTF / (MTTF + MTTR)
* Improving Availability

— Increase MTTF: More reliable hardware/software + Fault
Tolerance

— Reduce MTTR: improved tools and processes for diagnosis
and repair

4/28/15

Understanding MTTF

1

Probability
of Failure

Time

Understanding MTTF

1

Probability
of Failure

1/3 2/3

MTTF Time

Availability Measures

Availability = MTTF / (MTTF + MTTR) as %
— MTTF, MTBF usually measured in hours

* Since hope rarely down, shorthand is
“number of 9s of availability per year”

* 1 nine: 90% => 36 days of repair/year

2 nines: 99% => 3.6 days of repair/year

3 nines: 99.9% => 526 minutes of repair/year
4 nines: 99.99% => 53 minutes of repair/year
5 nines: 99.999% => 5 minutes of repair/year

Reliability Measures

* Another is average number of failures per year:
Annualized Failure Rate (AFR)
— E.g., 1000 disks with 100,000 hour MTTF
— 365 days * 24 hours = 8760 hours

— (1000 disks * 8760 hrs/year) / 100,000 = 87.6 failed
disks per year on average

— 87.6/1000 = 8.76% annual failure rate

* Google’s 2007 study* found that actual AFRs for
individual drives ranged from 1.7% for first year
drives to over 8.6% for three-year old drives

*research.google.com/archive/disk_failures.pdf

Dependability Design Principle

* Design Principle: No single points of failure
— “Chain is only as strong as its weakest link”

Dependability Corollary of Amdahl’s Law

— Doesn’t matter how dependable you make one
portion of system

— Dependability limited by part you do not improve

Error Detection/Correction Codes
Memory systems generate errors (accidentally
flipped-bits)

— DRAM s store very little charge per bit

— “Soft” errors occur occasionally when cells are struck by
alpha particles or other environmental upsets

— “Hard” errors can occur when chips permanently fail.

— Problem gets worse as memories get denser and larger
Memories protected against failures with EDC/ECC
Extra bits are added to each data-word

— Used to detect and/or correct faults in the memory system

— Each data word value mapped to unique code word

— A fault changes valid code word to invalid one, which can
be detected

4/28/15

Block Code Principles

Hamming distance = difference in # of bits
p=011011, q=001111, Ham. distance (p,q) = 2
p=011011, 3
g =110001,

distance (p,q) ="?

Can think of extra bits as creating
a code with the data

What if minimum distance
between members of code is 2
and get a 1-bit error?

g &

Richard Hamming, 1915-98
Turing Award Winner
14

Parity: Simple Error-Detection Coding

* Each data value, before it is
written to memory is “tagged”
with an extra bit to force the
stored word to have even

¢ Eachword, as it is read from
memory is “checked” by
finding its parity (including
the parity bit).

parity: bkgbsb,bsb,bsb
bobebsb,bb, b, b, Z 6\5\‘\ i ‘//1 o P

17 N

> @

¢ Minimum Hamming distance of parity code is 2 €

* A non-zero parity indicates an error occurred:
— 2 errors (on different bits) are not detected
— nor any even number of errors, just odd numbers of errors are detected

Parity Example

Data 0101 0101 * Read from memory

4 ones, even parity now 010101010

Write to memory: * 4 ones => even parity,
010101010 SO no error

to keep parity even * Read from memory
Data 0101 0111 110101010

5 ones, odd parity now ~ * 5ones =>odd parity,

Write to memory: so error
010101111 * What if error in parity
to make parity even bit?

Suppose Want to Correct 1 Error?

* Richard Hamming came up with simple to
understand mapping to allow Error Correction at
minimum distance of 3
— Single error correction, double error detection

* Called “Hamming ECC”

— Worked weekends on relay computer with unreliable
card reader, frustrated with manual restarting
— Got interested in error correction; published 1950

— R. W. Hamming, “Error Detecting and Correcting
Codes,” The Bell System Technical Journal, Vol. XXVI,
No 2 (April 1950) pp 147-160.

Detecting/Correcting Code Concept

Space of possible bit patterns (2N)

O O. o
L
Error changes bit pattern to
non-code
0 o ©

Sparse population of code words (2M << 2V)
- with identifiable signature

* Detection: bit pattern fails codeword check
* Correction: map to nearest valid code word

18

Hamming Distance: 8 code words
110

' 111

" ‘.‘

W' 101
001

000

4/28/15

Hamming Distance 2: Detection
Detect Single Bit Errors

* No 1 bit error goes to another valid code
* % codes are valid

Hamming Distance 3: Correction
Correct Single Bit Errors, Detect Double Bit Errors

Nearest
000
(one 1) (€
000
* No 2 bit error goes to another valid code; 1 bit error near
* 1/8 codes are valid

21

Administrivia

* Final Exam
— FRIDAY, MAY 15, 2015, 7-10P
— Location: 1 PIMENTEL

— Must notify Sagar of conflicts by Wed, 4/29 @
23:59:59

— THREE cheat sheets (MT1,MT2, post-MT2)
* Review Sessions:
— TA: May 6, 2-5pm, 105 Stanley
— HKN: May 4, 4:30-7:30, HP Auditorium
* Normal OH during RRR Week, info about finals
week to follow

Hamming Error Correction Code

* Use of extra parity bits to allow the position
identification of a single error

1. Mark all bit positions that are powers of 2 as
parity bits (positions 1, 2, 4, 8, 16, ...)
— Start numbering bits at 1 at left (not at 0 on right)
2. All other bit positions are data bits
(positions 3, 5,6, 7,9, 10, 11, 12, 13, 14, 15, ...)
3. Each data bit is covered by 2 or more parity bits

Hamming ECC

4. The position of parity bit determines sequence
of data bits that it checks

Bit 1 (0001,): checks bits (1,3,5,7,9,11,...)
— Bits with least significant bit of address = 1

— Bits with 2" least significant bit of address = 1

Bit 4 (0100,): checks bits (4-7, 12-15, 20-23, ...)
— Bits with 31 least significant bit of address = 1

Bit 8 (1000,): checks bits (8-15, 24-31, 40-47 ,...)
— Bits with 4t |east significant bit of address = 1

Bit 2 (0010,): checks bits (2,3,6,7,10,11,14,15,...)

4/28/15

Graphic of Hamming Code

Bit position 12/ 3/4/5/6 7 8/9|/1011 1213 14 15

Encoded dat
ne b;s 218 101 p2 d1 pa d2|d3|d4 p8 d5 d6 d7 d8 do|d10 d11
pt x| x| x| [x x| [x |x X

parity P2 X X X | x X | X x| x
bit pa X x| x|x x| x| x| x
X

coverage p8 XIXIX XXX X

* http://en.wikipedia.org/wiki/Hamming_code

Hamming ECC

5. Set parity bits to create even parity for each
group

* A byte of data: 10011010

* Create the coded word, leaving spaces for the
parity bits:

«__1_001_1010
000000000111
123456789012

* Calculate the parity bits

Hamming ECC

Position 1 checks bits 1,3,5,7,9,11 (bold):
? 1 001_1010.setpositionltoa_:
1 001 _1010

Position 2 checks bits 2,3,6,7,10,11 (bold):
0?1_001_1010.setposition2toa _:
0_1_001_1010

Position 4 checks bits 4,5,6,7,12 (bold):
011?2001_1010.setposition4toa _:
011_001_1010

Position 8 checks bits 8,9,10,11,12:
0111001?1010.setposition8toa_:
0111001_1010

Hamming ECC

¢ Position 1 checks bits 1,3,5,7,9,11:
? 1 _001_1010.setpositionltoaO0:
0_1 _001_1010

* Position 2 checks bits 2,3,6,7,10,11:
0?1_001_1010.setposition2toal:
011_001_1010

* Position 4 checks bits 4,5,6,7,12:
011?2001_1010.setposition4toa 1:
0111001_1010

¢ Position 8 checks bits 8,9,10,11,12:
0111001?1010.setposition8toa0:
011100101010

Hamming ECC

* Final code word: 011100101010

* Data word: 1 001 1010

Hamming ECC Error Check

* Suppose receive
011100101110
011100101110

Bit position 1 2/3/4/5/6/7 8910111213 14 15

E"°°:;: data | 1 02 d1/p4 d2|d3 da p8 d5 d6 d7 d8 d9 d10 di1
pt x| x| x| [x [x x |x

parity (B2 |X|X X | x x| x X

bit p4 x| x| x|x x| x| x

coverage | g XX XXX X|X

X | X X X

Hamming ECC Error Check

* Suppose receive
011100101110

4/28/15

Hamming ECC Error Check

* Suppose receive
011100101110
010111 v
11 01 11 X-Parity2inerror
1001 0V
01110 X-Parity 8inerror
* Implies position 8+2=10 is in error
011100101110

Hamming ECC Error Correct

* Flip the incorrect bit ...
011100101010

Hamming ECC Error Correct

* Suppose receive
011100101010
010111 V

11 01 01 V

Hamming ECC
* Finding and fixing a corrupted bit:

Suppose receive 011100101110
123456789012

e Parity 1_, Parity 2_, Parity 4_, Parity 8_
(Bits numbers xxx1,,,,, XXIXy00 XIXX s IXXXp0)

* Parity bits 2 and 8 incorrect. As 2 + 8 = 10,
bit position 10 is location of bad bit: flip value!

* Corrected value: 011100101010
* Why does Hamming ECC work?

Hamming Error Correcting Code
* Overhead involved in single error-correction code

* Let p be total number of parity bits and d number of data
bits in p + d bit word

* If p error correction bits are to point to error bit (p + d
cases) + indicate that no error exists (1 case), we need:

2r>=p+d+1,
thus p >=log(p +d + 1)
for large d, p approaches log(d)
* 8bitsdata=> d=8 2°=p+8+1=>p=4
* 16 data => 5 parity,
32 data => 6 parity,
64 data => 7 parity

Hamming Single-Error Correction,
Double-Error Detection (SEC/DED)

* Adding extra parity bit covering the entire word provides
double error detection as well as single error correction

123 456 738
Py Py dy ps d; d3dspy

* Hamming parity bits H (p, p, p5) are computed (even parity as
usual) plus the even parity over the entire word, p,:
H=0 p,=0, no error
H#0 p,=1, correctable single error (odd parity if 1 error => p,=1)
H#0 p,=0, double error occurred (even parity if 2 errors=> p,=0)
H=0 p,=1, single error occurred in p, bit, not in rest of word

Typical modern codes in DRAM memory systems:
64-bit data blocks (8 bytes) with 72-bit code words (9 bytes).

4/28/15

Hamming Distance = 4
1 bit error (one 0)

Nearest 1111

Hamming Single
Error Correction
+ Double

Error Detection

2 bit error
(two 0s, two 1s)
Halfway
Between Both

1 bit error (one
Nearest 0000

What if More Than 2-Bit Errors?

* Network transmissions, disks, distributed
storage common failure mode is bursts of bit
errors, not just one or two bit errors

— Contiguous sequence of B bits in which first, last and any
number of intermediate bits are in error

— Caused by impulse noise or by fading in wireless
— Effect is greater at higher data rates

Cyclic Redundancy Check

Simple example: Parity Check Block

Data 10011010 10011010
01101100 01101100
11110000 11110000

==-0020910tr=mmancsssnsansancnnas: -06060000->
11011100 11011100
00111100 00111100
11111100 11111100
00001100 00001100
Check 00111011 00111011

00000000 0O = Check! 00101101 Not 0 = Fail!

Cyclic Redundancy Check

Parity codes not powerful enough to detect long runs
of errors (also known as burst errors)

Better Alternative: Reed-Solomon Codes

— Used widely in CDs, DVDs, Magnetic Disks

— RS(255,223) with 8-bit symbols: each codeword contains
255 code word bytes (223 bytes are data and 32 bytes are
parity) R

13 2t

‘ DATA | PARITY ‘

— For this code: n =255,k =223,5s=8,2t=32,t=16

— Decoder can correct any errors in up to 16 bytes anywhere
in the codeword

Cyclic Redundancy Check

14 data bits 3 check bits 17 bits total
11010011101100 000 <--- input right padded by 3 bits

1011 <--- divisor
01100011101100 000 <--- result 3 bit CRC using the
1011 <--- divisor

polynomial X3 +x+1
001312“10“00 000 (divide by 1011 to get remainder)
00010111101100 000
1011
00000001101100 000 <--- skip leading zeros
1011
0000000011000 000
1011
00000000011000 000
1011
00000000001110 000
1011
00000000000101 000
101 1

00000000000000 100 <--- remainder

Cyclic Redundancy Check

For block of k bits, transmitter generates an

n-k bit frame check sequence

Transmits n bits exactly divisible by some number

Receiver divides frame by that number

— If no remainder, assume no error

— Easy to calculate division for some binary numbers with
shift register

Disks detect and correct blocks of 512 bytes with

called Reed Solomon codes = CRC

4/28/15

(In More Depth: Code Types)

* Linear Codes: > x -
Code is generated by G and in null-space of H
* Hamming Codes: Design the H matrix
— d =3 = Columns nonzero, Distinct
— d =4 = Columns nonzero, Distinct, Odd-weight
* Reed-solomon codes:
— Based on polynomials in GF(2¥) (l.e. k-bit symbols)
— Data as coefficients, code space as values of polynomial:
— P(x)=ag*a;xM+... a,xkt
— Coded: P(0),P(1),P(2)....,P(n-1)
— Can recover polynomial as long as get any k of n
— Alternatively: as long as no more than n-k coded symbols
erased, can recover data.
 Side note: Multiplication by constant in GF(2¥) can be
represented by kxk matrix: a-x
— Decompose unknown vector into k bits: x=x,+2x,+...+21x,
— Each column is result of multiplying a by 2/ a

Hamming ECC on your own

Test if these Hamming-code words are
correct. If one is incorrect, indicate the correct
code word. Also, indicate what the original
data was.

110101100011

111110001100

000010001010

Evolution of the Disk Drive

IBM RAMAC 305, 1956

Apple SCSI, 1986 e

Arrays of Small Disks

Can smaller disks be used to close gap in
performance between disks and CPUs?

Conventional:

4 disk designs &= w== @

3.5 525" 10” -
14"

‘LowEnd - High End ‘

Disk Array:
1 disk design

35— @

Replace Small Number of Large Disks with Large Number of
Small Disks! (1988 Disks)

IBM 3390K IBM 3.5" 0061 x70
Capacity 20 GBytes 320 MBytes 23 GBytes
Volume 97 cu. ft. 0.1 cu. ft. 11lcu. ft. 9X
Power 3 KW 11w 1KwW 3X
Data Rate | 15 MB/s 1.5 MB/s 1120 MB/s 8X
1/O Rate 600 1/0s/s 551/0s/s 3900 10s/s 6X
MTTF 250 KHrs 50 KHrs PP?Hrs
Cost $250K $2K $150K

Disk Arrays have potential for large data and 1/O rates,
high MB per cu. ft., high MB per KW, but what about
reliability?

RAID: Redundant Arrays of
(Inexpensive) Disks

* Files are "striped" across multiple disks
* Redundancy yields high data availability
— Availability: service still provided to user, even if
some components failed
* Disks will still fail
* Contents reconstructed from data
redundantly stored in the array
=> Capacity penalty to store redundant info
=> Bandwidth penalty to update redundant info

4/28/15

Redundant Arrays of Inexpensive Disks
RAID 1: Disk Mirroring/Shadowing

recovery
L~ group
e o0 o

* Each disk is fully duplicated onto its “mirror”
Very high availability can be achieved
¢ Bandwidth sacrifice on write:
Logical write = two physical writes
Reads may be optimized
* Most expensive solution: 100% capacity overhead

Redundant Array of Inexpensive Disks
RAID 3: Par'\ty D/isk

10010011
11001101
10010011

logical record
Striped physical [
records

P contains sum of

other disks per stripe
mod 2 (“parity”)

If disk fails, subtract

P from sum of other
disks to find missing information

R R O O O|r|o
PR OOOIR|IOR
RrOoORr ROl

Redundant Arrays of Inexpensive

Disks RAID 4: High I/O Rate Parity

|in . .B Increasing
\ - Logical
Iq5|des of 5 Disk

§|sks B Address
Er);?arm!ee;d DO B\\Stripe
write D15 o]]
=]

““m\ . I_Jlsk quumns.

Inspiration for RAID 5

* RAID 4 works well for small reads
* Small writes (write to one disk):
— Option 1: read other data disks, create new sum and
write to Parity Disk
— Option 2: since P has old sum, compare old data to
new data, add the difference to P

* Small writes are limited b arlty Disk: Write to
DO, D5 both also wr|te to

RAID 5: High 1/0 Rate Interleaved Parity

Increasing
B G B B B
Disk
Ind_ependent Addresses
o] [
possible
e (=] [- [[
interleaved
parity D12 B D13 | |p14| |[p1s
eample: |
write to DO,
D5 uses disks p20| |p21| |D22| |23 B
0,134 : : : :)
" Disk Columns -

Problems of Disk Arrays: Small Writes

RAID-5: Small Write Algorithm
1 Logical Write = 2 Physical Reads + 2 Physical Writes

Lo

new old
data dam (1. Read) parity (2-Read)
OR
XOR
(3. Write) (4. Write)

4/28/15

Tech Report Read ‘Round the World
(December 1987)
A Case for Redundant Arrays of Inexpensive Disks (RAID)

David A. Patterson, Garth Gibson, and Randy H. Karz

Scholar About 138,000 resuits (0.08 sec
Wrticles (8ook] A case for redundant arrays of inexpensive disks (RAID)
DA Patterson, G Gibson, RH Katz - 1988 - dl.acm.org
LLegal documents Abstract Increasing performance of CPUs and memories will be squandered if not matched

by a similar performance increase in /0. While the capacity of Single Large Expensive Disks
(SLED) has grown rapidly, the performance improvement of SLED has been modest. ...
Jany time Cited by 2814 Related articles All 239 versions Cite More~
Expensive Disk (SLED) has grown rapidly, the performance improvement of SLED
has been modest. Redundant Arrays of Inexpensive Disks (RAID), based on the
‘magneric disk technology developed for personal computers, offers an attractive
alternative to SLED, promising improvements of an order of magnitude in
ormance,rliabily, power consunpion,and scalably.
This paper introduces five levels of RAIDs, giving their relative
costiperformance, and compares RAIDs to an IBM 3380 and a Fujitsu Super Eagle.

Goc /Sle Case for Raid - “

RAID-I

* RAID-I (1989)

—Consisted of a Sun 4/280
workstation with 128 MB
of DRAM, four dual-string
SCSI controllers, 28 5.25-
inch SCSI disks and
specialized disk striping
software

RAID Il

* 1990-1993

* Early Network Attached
Storage (NAS) System running
a Log Structured File System
(LFS)

¢ Impact:

— $25 Billion/year in 2002

— Over $150 Billion in RAID
device sold since 1990-2002

— 200+ RAID companies (at the
peak)

— Software RAID a standard
component of modern OSs

RAID Il

And, in Conclusion, ...

¢ Great Idea: Redundancy to Get Dependability
— Spatial (extra hardware) and Temporal (retry if error)
* Reliability: MTTF & Annualized Failure Rate (AFR)
* Availability: % uptime (MTTF-MTTR/MTTF)
* Memory
— Hamming distance 2: Parity for Single Error Detect
— Hamming distance 3: Single Error Correction Code +
encode bit position of error
* Treat disks like memory, except you know when a disk
hasdfailed—erasure makes parity an Error Correcting
Code

¢ RAID-2, -3, -4, -5: Interleaved data and parity

10

