
CS61c Spring 2016 Discussion 1 – C

1 C Introduction

C is syntactically very similar to Java, but there are a few key differences of which to be wary:

• C is function oriented, not object oriented, so no objects for you.

• C does not automatically handle memory for you.

– In the case of stack memory (things allocated in the “usual” way), a datum is garbage immediately
after the function in which it was defined returns.

– In the case of heap memory (things allocated with malloc and friends), data is freed only when the
programmer explicitly frees it.

– In any case, allocated memory always holds garbage until it is initialized.

• C uses pointers explicitly. *p tells us to use the value that p points to, rather than the value of p, and &x

gives the address of x rather than the value of x.

There are other differences of which you should be aware, but this should be enough for you to get your feet
wet.

2 Uncommented Code? Yuck!

The following functions work correctly (note: this does not mean intelligently), but have no comments. Docu-
ment the code to prevent it from causing further confusion.

1. /*

*

*/

int foo(int *arr, size_t n) {

return n ? arr[0] + foo(arr + 1, n - 1) : 0;

}

2. /*

*

*/

int bar(int *arr, size_t n) {

int sum = 0, i;

for (i = n; i > 0; i--) {

sum += !arr[i - 1];

}

return ~sum + 1;

}

3. /*

*

*/

void baz(int x, int y) {

x = x ^ y;

y = x ^ y;

x = x ^ y;

}

1



3 Programming with Pointers

Implement the following functions so that they perform as described in the comments.

1. /* Swaps the value of two ints outside of this function. */

2. /* Increments the value of an int outside of this function by one. */

3. /* Returns the number of bytes in a string. Does not use strlen. */

4 Problem?

The following code segments may contain logic and syntax errors. Find and correct them.

1. /* Returns the sum of all the elements in SUMMANDS. */

int sum(int* summands) {

int sum = 0;

for (int i = 0; i < sizeof(summands); i++)

sum += *(summands + i);

return sum;

}

2. /* Increments all the letters in the string STRING, held in an array of length N.

* Does not modify any other memory which has been previously allocated. */

void increment(char* string, int n) {

for (int i = 0; i < n; i++)

*(string + i)++;

}

3. /* Copies the string SRC to DST. */

void copy(char* src, char* dst) {

while (*dst++ = *src++);

}

2


