
	

	

CS	61C	Spring	2016	Discussion	10	–	Cache	Coherency	
MOESI	Cache	Coherency	
With	the	MOESI	concurrency	protocol	implemented,	accesses	to	cache	accesses	appear	serializiable.	This	means	
that	the	result	of	the	parallel	cache	accesses	appear	the	same	as	if	there	were	done	in	serial	from	one	processor	
in	some	ordering.		
	

1. Consider	the	following	access	pattern	on	a	two-processor	system	with	a	direct-mapped,	write-back	
cache	with	one	cache	block	and	a	two	cache	block	memory.	Assume	the	MOESI	protocol	is	used,	with	
write-	back	caches,	write-allocate,	and	invalidation	of	other	caches	on	write	(instead	of	updating	the	
value	in	the	other	caches).		

	

Time	 After	Operation	 P1	cache	state	 P2	cache	state	 Memory	@	0	
up	to	date?	

Memory	@	1	
up	to	date?	

0	 P1:	read	block	1	 Exclusive	(1)	 Invalid	 YES	 YES	
1	 P2:	read	block	1	 	 	 	 	
2	 P1:	write	block	1	 	 	 	 	
3	 P2:	write	block	1	 	 	 	 	
4	 P1:	read	block	0	 	 	 	 	
5	 P2:	read	block	0	 	 	 	 	
6	 P1:	write	block	0	 	 	 	 	
7	 P2:	read	block	0	 	 	 	 	
8	 P2:	write	block	0	 	 	 	 	
9	 P1:	read	block	0	 	 	 	 	

	
Concurrency		

2. Consider	the	following	function:		
void	transferFunds(struct	account	*from,	
																						struct	account	*to,	
																						long	cents)	
			{	
						from->cents	-=	cents;		
						to->cents	+=	cents;	
			}		
	
a. What	are	some	data	races	that	could	occur	if	this	function	is	called	simultaneously	from	two	(or	

more)	threads	on	the	same	accounts?	(Hint:	if	the	problem	isn’t	obvious,	translate	the	function	into	
MIPS	first)	
	

	
b. How	could	you	fix	or	avoid	these	races?	Can	you	do	this	without	hardware	support?	

	

State	 Cache	up	to	
date?	

Memory	up	
to	date?	

Others	have	a	
copy?	

Can	respond	to	
other’s	reads?	

Can	write	without	
changing	state?	

Modified	 Yes	 No	 No	 Yes,	Required	 Yes	
Owned	 Yes	 Maybe	 Maybe	 Yes,	Optional	 No	
Exclusive	 Yes	 Yes	 No	 Yes,	Optional	 No	
Shared	 Yes	 Maybe	 Maybe	 No	 No	
Invalid	 No	 Maybe	 Maybe	 No	 No	

	

	

Thread	Level	Parallelism	
	
#pragma	omp	parallelism	
{	
	 /*	code	here	*/	
}	
	
#pragma	omp	parallel	for		
for	(int	i	=	0;	i	<	n;	i++)	{	
	 /*	code	here	*/	
}	
	
1.	For	the	following	snippets	of	code	
below,	circle	one	of	the	following	to	indicate	what	issue,	if	any,	the	code	will	experience.	Then	provide	a	short	justification.	
Assume	the	default	number	of	threads	is	greater	than	1.	Assume	no	thread	will	complete	before	another	thread	starts	
executing.	Assume	arr	is	an	int	array	with	length	n.	
	
a)		
//	Set	element	i	of	arr	to	i		
#pragma	omp	parallel	
(int	i	=	0;	i	<	n;	i++)		
	 arr[i]	=	i;	
	
			Sometimes	incorrect	 										Always	incorrect													Slower	than	serial	 			Faster	than	serial	
	
	
	
	
b)	
//	Set	arr	to	be	an	array	of	Fibonacci	numbers.	
arr[0]	=	0;	
arr[1]	=	1;	
#pragma	omp	parallel	for	
for	(int	i	=	2;	i	<	n;	i++)		
	 arr[i]	=	arr[i-1]	+	arr[i	-	2];	
	
			Sometimes	incorrect	 										Always	incorrect													Slower	than	serial	 			Faster	than	serial	
	
	
	
	
	
c)		
//	Set	all	elements	in	arr	to	0;	
int	i;	
#pragma	omp	parallel	for	
for	(i	=	0;	i	<	n;	i++)	
	 arr[i]	=	0;	
	
			Sometimes	incorrect	 										Always	incorrect													Slower	than	serial	 			Faster	than	serial	

*Each thread runs a copy of code within the block
*Thread scheduling is non-deterministic
	

Same as: #pragma omp parallel
 {
 #pragma omp for
 for (int i =0; i < n; i++) {...}
 }
	

