
	

	

CS	61C	Spring	2016	Discussion	10	–	Cache	Coherency	
	
MOESI	Cache	Coherency	
With	the	MOESI	concurrency	protocol	implemented,	accesses	to	cache	accesses	appear	serializiable.	This	means	
that	the	result	of	the	parallel	cache	accesses	appear	the	same	as	if	there	were	done	in	serial	from	one	processor	
in	some	ordering.		
	

1. Consider	the	following	access	pattern	on	a	two-processor	system	with	a	direct-mapped,	write-back	
cache	with	one	cache	block	and	a	two	cache	block	memory.	Assume	the	MOESI	protocol	is	used,	with	
write-	back	caches,	write-allocate,	and	invalidation	of	other	caches	on	write	(instead	of	updating	the	
value	in	the	other	caches).		

	

Time	 After	Operation	 P1	cache	state	 P2	cache	state	 Memory	@	0	
up	to	date?	

Memory	@	1	
up	to	date?	

0	 P1:	read	block	1	 Exclusive	(1)	 Invalid	 YES	 YES	
1	 P2:	read	block	1	 Owned	(1)	 Shared	(1)	 YES	 YES	
2	 P1:	write	block	1	 Modified	(1)	 Invalid	 YES	 NO	
3	 P2:	write	block	1	 Invalid	 Modified	(1)	 YES	 NO	
4	 P1:	read	block	0	 Exclusive	(0)	 Modified	(1)	 YES	 NO	
5	 P2:	read	block	0	 Owned	(0)	 Shared	(0)	 YES	 YES	
6	 P1:	write	block	0	 Modified	(0)	 Invalid	 NO	 YES	
7	 P2:	read	block	0	 Owned	(0)	 Shared	(0)	 NO	 YES	
8	 P2:	write	block	0	 Invalid	 Modified	(0)	 NO	 YES	
9	 P1:	read	block	0	 Shared	(0)	 Owned	(0)	 NO	 YES	

	
Concurrency		

2. Consider	the	following	function:		
void	transferFunds(struct	account	*from,	
																						struct	account	*to,	
																						long	cents)	
			{	
						from->cents	-=	cents;		
						to->cents	+=	cents;	
			}		
	
a. What	are	some	data	races	that	could	occur	if	this	function	is	called	simultaneously	from	two	(or	

more)	threads	on	the	same	accounts?	(Hint:	if	the	problem	isn’t	obvious,	translate	the	function	into	
MIPS	first)	
	

State	 Cache	up	to	
date?	

Memory	up	
to	date?	

Others	have	a	
copy?	

Can	respond	to	
other’s	reads?	

Can	write	without	
changing	state?	

Modified	 Yes	 No	 No	 Yes,	Required	 Yes	
Owned	 Yes	 Maybe	 Maybe	 Yes,	Optional	 No	
Exclusive	 Yes	 Yes	 No	 Yes,	Optional	 No	
Shared	 Yes	 Maybe	 Maybe	 No	 No	
Invalid	 No	 Maybe	 Maybe	 No	 No	

	

	

Each	thread	needs	to	read	the	“current”	value,	perform	an	add/sub,	and	store	a	value	for	from-	
>cents	and	to->cents.	Two	threads	could	read	the	same	“current”	value	and	the	later	store	
essentially	erases	the	other	transaction	at	either	line.	
	

b. How	could	you	fix	or	avoid	these	races?	Can	you	do	this	without	hardware	support?	
	
Wrap	transferFunds	in	a	critical	section,	or	divide	up	the	accounts	array	and	for	loop	in	a	way	that	
you	can	have	separate	threads	work	on	different	accounts	
	

Thread	Level	Parallelism	
	
#pragma	omp	parallelism	
{	
	 /*	code	here	*/	
}	
	
#pragma	omp	parallel	for		
for	(int	i	=	0;	i	<	n;	i++)	{	
	 /*	code	here	*/	
}	
	
1.	For	the	following	snippets	of	code	
below,	circle	one	of	the	following	to	indicate	what	issue,	if	any,	the	code	will	experience.	Then	provide	a	short	justification.	
Assume	the	default	number	of	threads	is	greater	than	1.	Assume	no	thread	will	complete	before	another	thread	starts	
executing.	Assume	arr	is	an	int	array	with	length	n.	
	
a)		
//	Set	element	i	of	arr	to	i		
#pragma	omp	parallel	
(int	i	=	0;	i	<	n;	i++)		
	 arr[i]	=	i;	
	
			Sometimes	incorrect	 										Always	incorrect													Slower	than	serial	 			Faster	than	serial	
	
Slower	than	serial	–	there	is	no	for	directive,	so	every	thread	executes	this	loop	in	its	entirety.	n	threads	running	n	loops	at	
the	same	time	will	actually	execute	in	the	same	time	as	1	thread	running	1	loop.	Despite	the	possibility	of	false	sharing,	the	
values	should	all	be	correct	at	the	end	of	the	loop.	Furthermore,	the	existence	of	parallel	overhead	due	to	the	extra	number	
of	threads	could	slow	down	the	execution	time.	
	
b)	
//	Set	arr	to	be	an	array	of	Fibonacci	numbers.	
arr[0]	=	0;	
arr[1]	=	1;	
#pragma	omp	parallel	for	
for	(int	i	=	2;	i	<	n;	i++)		
	 arr[i]	=	arr[i-1]	+	arr[i	-	2];	
	
			Sometimes	incorrect	 										Always	incorrect													Slower	than	serial	 			Faster	than	serial	
	
Always	incorrect	(if	n>4)	–	Loop	has	data	dependencies,	so	the	calculation	of	all	threads	but	the	first	one	will	depend	on	
data	from	the	previous	thread.	Because	we	said	“assume	no	thread	will	complete	before	another	thread	starts	executing,”	
then	this	code	will	always	be	wrong	from	reading	incorrect	values.	

*Each thread runs a copy of code within the block
*Thread scheduling is non-deterministic
	

Same as: #pragma omp parallel
 {
 #pragma omp for
 for (int i =0; i < n; i++) {...}
 }
	

	

	

	
c)		
//	Set	all	elements	in	arr	to	0;	
int	i;	
#pragma	omp	parallel	for	
for	(i	=	0;	i	<	n;	i++)	
	 arr[i]	=	0;	
	
			Sometimes	incorrect	 										Always	incorrect													Slower	than	serial	 			Faster	than	serial	
	
Faster	than	serial	–	the	for	directive	actually	automatically	makes	loop	variables	(such	as	the	index)	private,	so	this	will	work	
properly.	The	for	directive	splits	up	the	iterations	of	the	loop	into	continuous	chunks	for	each	thread,	so	no	data	
dependencies	or	false	sharing.	
		
2.	Consider	the	following	code:	
//	Decrements	element	i	of	arr.	n	is	a	multiple	of	omp_get_num_threads()	
#pragma	omp	parallel		
{	
	 int	threadCount	=	omp_get_num_threads();	
	 int	myThread	=	omp_get_thread_num();	
	 for	(int	i	=	0;	i	<	n;	i++)	{	
	 	 if	(i	%	threadCount	==	myThread)	
	 	 	 arr[i]	*=	arr[i];	
	 }	
}	
	
What	potential	issue	can	arise	from	this	code?	
	
False	sharing	arises	because	different	threads	can	modify	elements	located	in	the	same	memory	block	
simultaneously.	This	is	a	problem	because	some	threads	may	have	incorrect	values	in	their	cache	block	
when	they	modify	the	value	arr[i],	invalidating	the	cache	block.	A	fix	to	this	will	be	discussed	in	lab.	
	
3.	Consider	the	following	function:	
void	transferFunds(struct	account	*from,	struct	account	*to,	long	cents)	{	
	 from->cents	-=	cents;	
	 to->cents	+=	cents;	
}	
	 	
a.	 What	are	some	data	races	that	could	occur	if	this	function	is	called	simultaneously	from	two	(or	
more)	threads	on	the	same	accounts?	(Hint:	If	the	problem	isn't	obvious,	translate	the	function	into	
MIPS	first)	
	 	
	 Each	thread	needs	to	read	the	“current”	value,	perform	an	add/sub,	and	store	a	value	for	from-	
>cents	and	to->cents.	Two	threads	could	read	the	same	“current”	value	and	the	later	store	essentially	
overwrites	the	other	transaction	at	either	line.	
	
b.	 How	could	you	fix	or	avoid	these	races?	Can	you	do	this	without	hardware	support?	

	

	

	 Wrap	transferFunds	in	a	critical	section,	or	divide	up	the	accounts	array	and	for	loop	in	a	way	
that	you	can	have	separate	threads	work	on	different	accounts	
	

