
Virtual	Memory	Overview	

Virtual	address	(VA):	What	your	program	uses	

Virtual	Page	Number	 Page	Offset	

Physical	address	(PA):	What	actually	determines	where	in	memory	to	go	

Physical	Page	Number	 Page	Offset	

With	4	KiB	pages	and	byte	addresses,	2^(page	offset	bits)	=	4096,	so	page	offset	bits	=	12.	

The	Big	Picture:	Logical	Flow	
Translate	VA	to	PA	using	the	TLB	and	Page	Table.	Then	use	
PA	to	access	memory	as	the	program	intended.	

Pages	
A	chunk	of	memory	or	disk	with	a	set	size.	Addresses	in	
the	same	virtual	page	get	mapped	to	addresses	in	the	
same	physical	page.	The	page	table	determines	the	
mapping.	

The	Page	Table	

Index	=	Virtual	Page	Number	
(VPN)	(not	stored)	

Page	
Valid	

Page	
Dirty	

Permission	Bits	
(read,	write,	...)	

Physical	Page	Number	(PPN)	

0	 	 	 	 	

1	 	 	 	 	

2	 	 	 	 	

…	 	 	 	 	

(Max	virtual	page	number)	 	 	 	 	

Each	stored	row	of	the	page	table	is	called	a	page	table	entry	(the	grayed	section	is	the	first	page	
table	entry).	The	page	table	is	stored	in	memory;	the	OS	sets	a	register	telling	the	hardware	the	
address	of	the	first	entry	of	the	page	table.	The	processor	updates	the	“page	dirty”	in	the	page	
table:	“page	dirty”	bits	are	used	by	the	OS	to	know	whether	updating	a	page	on	disk	is	
necessary.	Each	process	gets	its	own	page	table.	

• Protection	Fault--The	page	table	entry	for	a	virtual	page	has	permission	bits	that	prohibit	
the	requested	operation	

• Page	Fault--The	page	table	entry	for	a	virtual	page	has	its	valid	bit	set	to	false.	The	entry	is	
not	in	memory.	

	

	

The	Translation	Lookaside	Buffer	(TLB)	

A	cache	for	the	page	table.	Each	block	is	a	single	page	table	entry.	If	an	entry	is	not	in	the	
TLB,	it’s	a	TLB	miss.	Assuming	fully	associative:		

TLB	Entry	
Valid	

Tag	=	Virtual	Page	Number	 Page	Table	Entry	

Page	Dirty	 Permission	Bits	 Physical	Page	Number	

…	 …	 …	 …	 …	 	
	

The	Big	Picture	Revisited	

	
	

Exercises	
	

1)	What	are	three	specific	benefits	of	using	virtual	memory?	

Bridges	memory	and	disk	in	memory	hierarchy.	
Simulates	full	address	space	for	each	process.	
Enforces	protection	between	processes.	
	
2)	What	should	happen	to	the	TLB	when	a	new	value	is	loaded	into	the	page	table	
address	register?	

The	valid	bits	of	the	TLB	should	all	be	set	to	0.	The	page	table	entries	in	the	TLB	corresponded	to	
the	old	page	table,	so	none	of	them	are	valid	once	the	page	table	address	register	points	to	a	
different	page	table.	

3)	A	processor	has	16-bit	addresses,	256	byte	pages,	and	an	8-entry	fully	associative	TLB	
with	LRU	replacement	(the	LRU	field	is	3	bits	and	encodes	the	order	in	which	pages	were	
accessed,	0	being	the	most	recent).	At	some	time	instant,	the	TLB	for	the	current	process	
is	the	initial	state	given	in	the	table	below.	Assume	that	all	current	page	table	entries	are	
in	the	initial	TLB.	Assume	also	that	all	pages	can	be	read	from	and	written	to.	Fill	in	the	
final	state	of	the	TLB	according	to	the	access	pattern	below.	

	

Free	physical	pages: 0x17, 0x18, 0x19
Access	pattern:
Read	 0x11f0	
Write	 0x1301	
Write	 0x20ae	
Write	 0x2332	
Read	 0x20ff	
Write	 0x3415	

	
Initial	TLB	

VPN	 PPN	 Valid	 Dirty	 LRU	
0x01 0x11 1	 1	 0	
0x00 0x00 0	 0	 7	
0x10 0x13 1	 1	 1	
0x20 0x12 1	 0	 5	
0x00 0x00 0	 0	 7	
0x11 0x14 1	 0	 4	
0xac 0x15 1	 1	 2	
0xff 0x16 1	 0	 3	

	
	
Read	0x11f0:	hit,	LRUs:	1,7,2,5,7,0,3,4	
Write	0x1301:	miss,	map	VPN	0x13	to	PPN	0x17,	valid	and	dirty,	LRUs:	2,0,3,6,7,1,4,5	
Write	0x20ae:	hit,	dirty,	LRUs:	3,1,4,0,7,2,5,6	
Write	0x2332:	miss,	map	VPN	0x23	to	PPN	0x18,	valid	and	dirty,	LRUs:	4,2,5,1,0,3,6,7	
Read	0x20ff:	hit,	LRUs:	4,2,5,0,1,3,6,7	
Write	0x3415:	miss	and	replace	last	entry,	map	VPN	0x34	to	0x19,	dirty,	LRUs,	5,3,6,1,2,4,7,0	
	
Final	TLB	

VPN	 PPN	 Valid	 Dirty	 LRU	
0x01 0x11 1	 1	 5	
0x13 0x17 1	 1	 3	
0x10 0x13 1	 1	 6	
0x20 0x12 1	 1	 1	
0x23 0x18 1	 1	 2	
0x11 0x14 1	 0	 4	
0xac 0x15 1	 1	 7	
0x34 0x19 1	 1	 0	

	

	I/O	
1. Fill	this	table	of	polling	and	interrupts.	

Operation	 Definition	 Pro/Good	for	 Con	
Polling	 Forces	the	hardware	to	

wait	on	ready	bit	
(alternatively,	if	timing	
of	device	is	known	–	the	
ready	bit	can	be	polled	
at	the	frequency	of	the	
device).	It	basically	
means	manually	
checking	the	ready	bit	
regularly.	

PRO:	
-easy	to	write	
-poll	handler	does	not	
have	excessively	high	
overhead	
-deterministic	
-doesn’t	require	
additional	hardware	
Good	for:	
-Mouse,	keyboard		

Infeasible	on	hardware	
with	fast	transfer	rates	
that	is	actually	rarely	
ready	(e.g.	Ethernet	
card	receiver)	

Interrupts	 Hardware	fires	an	
“exception”	when	it	
becomes	ready.	CPU	
changes	$PC	to	execute	
code	in	the	interrupt	
handler	when	this	
occurs.	

PRO:	
-Necessary	for	fast	
devices	that	are	rarely	
ready.	
Good	for:	
Fast	devices	-	
Hard	drives,		
Network	cards	

-nondeterministic	when	
interrupt	occurs		
-interrupt	handler	has	
some	overhead	(saves	
all	registers),	meaning	
polling	can	actually	be	
faster	for	slow,	often	
ready	devices	such	as	
mice	

	
2. Memory	Mapped	I/O	

Certain	memory	addresses	correspond	to	registers	in	I/O	devices	and	not	normal	
memory.	
0xFFFF0000	–	Receiver	Control:		
Lowest	two	bits	are	interrupt	enable	bit	and	ready	bit.	
0xFFFF0004	–	Receiver	Data:	
Received	data	stored	at	lowest	byte.	
0xFFFF0008	–	Transmitter	Control	
Lowest	two	bits	are	interrupt	enable	bit	and	ready	bit.	
0xFFFF000C	–	Transmitter	Data	
Transmitted	data	stored	at	lowest	byte.	
	
Write	MIPS	code	to	read	a	byte	from	the	receiver	and	immediately	send	it	to	the	
transmitter.	

lui	$t0	0xffff	
receive_wait:	#poll	on	ready	of	receiver	

lw	$t1	0($t0)	
andi	$t1	$t1	1	
beq	$t1	$zero	receive_wait	
lb	$t2	4$t0)	#load	data	

transmit_wait:	#poll	on	ready	of	transmitter	
lw	$t1	8($t0)	
andi	$t1	$t1	1	
beq	$t1	$zero	transmit_wait	
#write	to	transmitter	
sb	$t2	12($t0)	

