CS61C : Machine Structures

Lecture #11: FP II & Pseudo Instructions

2005-07-07

Andy Carle
FP Review

• Floating Point numbers approximate values that we want to use.

• IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers
 • Every desktop or server computer sold since ~1997 follows these conventions

• Summary (single precision):

<table>
<thead>
<tr>
<th></th>
<th>31</th>
<th>30</th>
<th>23</th>
<th>22</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Exponent</td>
<td>Significand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 bit</td>
<td>8 bits</td>
<td>23 bits</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• \((-1)^S \times (1 + \text{Significand}) \times 2^{(\text{Exponent}-127)}\)

• Double precision identical, bias of 1023
Problem: There’s a gap among representable FP numbers around 0

- Smallest representable pos num:
 \[a = 1.0... 2 \times 2^{-126} = 2^{-126} \]

- Second smallest representable pos num:
 \[b = 1.000...1 2 \times 2^{-126} = 2^{-126} + 2^{-149} \]
 \[a - 0 = 2^{-126} \]
 \[b - a = 2^{-149} \]

Normalization and implicit 1 is to blame!

Gaps!
Solution:

- We still haven’t used Exponent = 0, Significand nonzero
- Denormalized number: no leading 1, implicit exponent = -126.
- Smallest representable positive number:
 \[a = 2^{-149} \]
- Second smallest representable positive number:
 \[b = 2^{-148} \]
Representation for Denorms (3/3)

• Normal FP equation:
 • \((-1)^S \times (1 + \text{Significand}) \times 2^{(\text{Exponent} - 127)}\)

• If \((\text{fp.exp} == 0 \text{ and } \text{fp.significant} != 0)\)
 • Denorm
 • \((-1)^S \times (0 + \text{Significand}) \times 2^{-126}\)
IEEE Four Rounding Modes

• Math on real numbers ⇒ we worry about rounding to fit result in the significant field.

• FP hardware carries 2 extra bits of precision, and rounds for proper value

• Rounding occurs when converting…
 • double to single precision
 • floating point # to an integer
IEEE Four Rounding Modes

• Round towards $+\infty$
 • ALWAYS round “up”: $2.1 \Rightarrow 3$, $-2.1 \Rightarrow -2$

• Round towards $-\infty$
 • ALWAYS round “down”: $1.9 \Rightarrow 1$, $-1.9 \Rightarrow -2$

• Truncate
 • Just drop the last bits (round towards 0)

• Round to (nearest) even (default)
 • Normal rounding, almost: $2.5 \Rightarrow 2$, $3.5 \Rightarrow 4$
 • Like you learned in grade school
 • Insures fairness on calculation
 • Half the time we round up, other half down
Clarification - IEEE Four Rounding Modes

• This is just an example in base 10 to show you the 4 modes.
• What really happens is…
 1) in **binary**, not decimal!
 2) at the lowest bit of the mantissa with the **guard bit(s)** as our extra bit(s), and you need to decide how these extra bit(s) affect the result if the guard bits are “100…”
 3) If so, you’re half-way between the representable numbers.

E.g., 0.1010 is 5/8, halfway between our representable 4/8 [1/2] and 6/8 [3/4]. Which number do we round to? 4 modes!
Integer Multiplication (1/3)

• Paper and pencil example (unsigned):

 Multiplicand 1000 8
 Multiplier x1001 9

 + 1000
 01001000

 • m bits x n bits = m + n bit product
Integer Multiplication (2/3)

- In MIPS, we multiply registers, so:
 - 32-bit value x 32-bit value = 64-bit value

- Syntax of Multiplication (signed):
 - `mult register1, register2`
 - Multiplies 32-bit values in those registers & puts 64-bit product in special result regs:
 - puts product upper half in `hi`, lower half in `lo`
 - `hi` and `lo` are 2 registers separate from the 32 general purpose registers
 - Use `mfhi register` & `mflo register` to move from `hi`, `lo` to another register
Integer Multiplication (3/3)

• Example:
 • in C: \(a = b \times c; \)
 • in MIPS:
 - let \(b \) be \($s2 \); let \(c \) be \($s3 \); and let \(a \) be \($s0 \) and \($s1 \) (since it may be up to 64 bits)

\[
\begin{align*}
\text{mult } &\quad $s2, $s3 \quad \# \text{ } b \times c \\
\text{mfhi } &\quad $s0 \quad \# \text{ upper half of product into } $s0 \\
\text{mflo } &\quad $s1 \quad \# \text{ lower half of product into } $s1
\end{align*}
\]

• Note: Often, we only care about the lower half of the product.
Integer Division (1/2)

• Paper and pencil example (unsigned):

\[
\begin{array}{c|c}
\text{Divisor} & \text{Dividend} \\
1000 & 1001010 \\
\hline
& -1000 \\
& 101011010 \\
& -1000 \\
& 10 \\
& 101 \\
& 1010 \\
& -1000 \\
& 10 \\
\end{array}
\]

Quotient 1001

Dividend 1000

Remainder 10

(or Modulo result)

• Dividend = Quotient \times \text{Divisor} + \text{Remainder}
Integer Division (2/2)

• Syntax of Division (signed):
 • `div register1, register2`
 • Divides 32-bit register 1 by 32-bit register 2:
 • puts remainder of division in `hi`, quotient in `lo`

• Implements C division (`/`) and modulo (`%`)

• Example in C: `a = c / d; b = c % d;`

• in MIPS: `a<->$s0; b<->$s1; c<->$s2; d<->$s3`
  ```
  div $s2,$s3     # lo=c/d, hi=c%d
  mflo $s0       # get quotient
  mfhi $s1       # get remainder
  ```
Unsigned Instructions & Overflow

• MIPS also has versions of `mult`, `div` for unsigned operands:
  ```
  multu
  divu
  ```

• Determines whether or not the product and quotient are changed if the operands are signed or unsigned.

• MIPS does not check overflow on ANY signed/unsigned multiply, divide instr

 • Up to the software to check `hi`
FP Addition & Subtraction

• Much more difficult than with integers (can’t just add significands)

• How do we do it?
 • De-normalize to match larger exponent
 • Add significands to get resulting one
 • Normalize (& check for under/overflow)
 • Round if needed (may need to renormalize)

• If signs ≠, do a subtract. (Subtract similar)
 • If signs ≠ for add (or = for sub), what’s ans sign?

• Question: How do we integrate this into the integer arithmetic unit? [Answer: We don’t!]
MIPS Floating Point Architecture (1/4)

- Separate floating point instructions:
 - Single Precision:
 - add.s, sub.s, mul.s, div.s
 - Double Precision:
 - add.d, sub.d, mul.d, div.d

- These are **far more complicated** than their integer counterparts
 - Can take much longer to execute
Problems:

- Inefficient to have different instructions take vastly differing amounts of time.
- Generally, a particular piece of data will not change FP ⇔ int within a program.
 - Only 1 type of instruction will be used on it.
- Some programs do no FP calculations
- It takes lots of hardware relative to integers to do FP fast
MIPS Floating Point Architecture (3/4)

- 1990 Solution: Make a completely separate chip that handles only FP.

- **Coprocessor 1:** FP chip
 - contains 32 32-bit registers: $f0, f1, ...
 - most of the registers specified in .s and .d instruction refer to this set
 - separate load and store: `lwcl` and `swcl` ("load word coprocessor 1", "store ...")

- Double Precision: by convention, even/odd pair contain one DP FP number: $f0/f1, f2/f3, ... , f30/f31
 - Even register is the name
MIPS Floating Point Architecture (4/4)

- 1990 Computer actually contains multiple separate chips:
 - Processor: handles all the normal stuff
 - Coprocessor 1: handles FP and only FP;
 - more coprocessors?… Yes, later
 - Today, FP coprocessor integrated with CPU, or cheap chips may leave out FP HW

- Instructions to move data between main processor and coprocessors:
 - mfc0, mtc0, mfc1, mtc1, etc.

- Appendix pages A-70 to A-74 contain many, many more FP operations.
FP/Math Summary

- **Reserve exponents, significands:**

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Significand</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>nonzero</td>
<td>Denorm</td>
</tr>
<tr>
<td>1-254</td>
<td>anything</td>
<td>+/- fl. pt. #</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>+/- ∞</td>
</tr>
<tr>
<td>255</td>
<td>nonzero</td>
<td>NaN</td>
</tr>
</tbody>
</table>

- **Integer **mult, div uses hi, lo regs
 - mfhi and mflo copies out.

- **Four rounding modes (to even default)**

- **MIPS FL ops complicated, expensive**
Administrivia

• Midterm TOMORROW!!!11!one!
 • 11:00 – 2:00
 • 277 Cory
 • You may bring with you:
 - The green sheet from COD or a photocopy thereof
 - One 8½” x 11” note sheet with handwritten notes on one side
 - No books, calculators, other shenanigans

• Conflicts, DSP, other issues:
 - let me know ASAP

Project 1 is due Sunday night
Review from before: \texttt{lui}

• So how does \texttt{lui} help us?

 • Example:

 \begin{verbatim}
 addi $t0,$t0, 0xABABCDCD
 \end{verbatim}

 becomes:

 \begin{verbatim}
 lui $at, 0xABAB
 ori $at, $at, 0xCDCD
 add $t0,$t0,$at
 \end{verbatim}

 • Now each I-format instruction has only a 16-bit immediate.

• \textbf{Wouldn’t it be nice if the assembler would this for us automatically?}

 - If number too big, then just automatically replace \texttt{addi} with \texttt{lui}, \texttt{ori}, \texttt{add}
True Assembly Language (1/3)

- **Pseudoinstruction**: A MIPS instruction that doesn’t turn directly into a machine language instruction, but into other MIPS instructions.

- What happens with pseudoinstructions?
 - They’re broken up by the assembler into several “real” MIPS instructions.
 - But what is a “real” MIPS instruction? Answer in a few slides.

- First some examples
Example Pseudoinstructions

• Register Move

 move reg2,reg1

 Expands to:
 add reg2,$zero,reg1

• Load Immediate

 li reg,value

 If value fits in 16 bits:
 addi reg,$zero,value

 else:
 lui reg,upper 16 bits of value
 ori reg,$zero,lower 16 bits
True Assembly Language (2/3)

• Problem:
 • When breaking up a pseudoinstruction, the assembler may need to use an extra reg.
 • If it uses any regular register, it’ll overwrite whatever the program has put into it.

• Solution:
 • Reserve a register ($1, called $at for “assembler temporary”) that assembler will use to break up pseudo-instructions.
 • Since the assembler may use this at any time, it’s not safe to code with it.
Example Pseudoinstructions

• Rotate Right Instruction
 \texttt{ror reg, value}

 Expands to:
 \texttt{srl \$at, reg, value}
 \texttt{sll reg, reg, 32-value}
 \texttt{or reg, reg, \$at}

• "No OPeration" instruction
 \texttt{nop}

 Expands to instruction = \(0_{\text{ten}}\)
 \texttt{sll \$0, \$0, 0}
Example Pseudoinstructions

- Wrong operation for operand

  ```
  addu   reg,reg,value # should be addiu
  ```

 If value fits in 16 bits, `addu` is changed to:

  ```
  addiu  reg,reg,value
  ```

 else:

  ```
  lui    $at,upper 16 bits of value
  ori    $at,$at,lower 16 bits
  addu   reg,reg,$at
  ```

- How do we avoid confusion about whether we are talking about MIPS assembler with or without pseudoinstructions?
True Assembly Language (3/3)

- **MAL** (MIPS Assembly Language): the set of instructions that a programmer may use to code in MIPS; this includes pseudoinstructions.

- **TAL** (True Assembly Language): set of instructions that can actually get translated into a single machine language instruction (32-bit binary string).

- A program must be converted from MAL into TAL before translation into 1s & 0s.
Questions on Pseudoinstructions

• Question:
 • How does MIPS recognize pseudo-instructions?

• Answer:
 • It looks for officially defined pseudo-instructions, such as `ror` and `move`.
 • It looks for special cases where the operand is incorrect for the operation and tries to handle it gracefully.
Rewrite TAL as MAL

- TAL:

 or $v0,$0,$0
 Loop: slt $t0,$0,$al
 beq $t0,$0,Exit
 add $v0,$v0,$a0
 addi $al,$al,-1
 j Loop
 Exit:

- This time convert to MAL

- It’s OK for this exercise to make up MAL instructions
Rewrite TAL as MAL (Answer)

• TAL:

 or $v0,$0,$0
 Loop: slt $t0,$0,$a1
 beq $t0,$0,Exit
 add $v0,$v0,$a0
 addi $a1,$a1,-1
 j Loop

 Exit:

• MAL:

 li $v0,0
 Loop: bge $zero,$a1,Exit
 add $v0,$v0,$a0
 sub $a1,$a1,1
 j Loop

 Exit:
Peer Instruction

Which of the instructions below are **MAL** and which are **TAL**?

A. `addi $t0, $t1, 40000`
B. `beq $s0, 10, Exit`
C. `sub $t0, $t1, 1`
In conclusion

• Assembler expands real instruction set (TAL) with pseudoinstructions (MAL)
 • Only TAL can be converted to raw binary
 • Assembler’s job to do conversion
 • Assembler uses reserved register $at
 • MAL makes it much easier to write MIPS