Outline

- Waveforms
- State
- Clocks
- FSMs

Review (1/3)

• Use this table and techniques we learned to transform from 1 to another

(2/3): Circuit & Algebraic Simplification

\[y = ((ab) + a) + c \]
\[= ab + a + c \]
\[= a(b + 1) + c \]
\[= a(1) + c \]
\[= a + c \]
\[\alpha \]

simplified circuit

(3/3): Laws of Boolean Algebra

Signals and Waveforms

• Outputs of CL change over time
 • With what? \(\rightarrow \) Change in inputs

 • Can graph changes with waveforms …
State

- With CL, output is always a function of CURRENT input
- With some (variable) propagation delay

Clearly, we need a way to introduce state into computation

Accumulator Example

Want: \(S = 0 \); for \(i \) from 0 to \(n-1 \)
\[S = S + X_i \]

First try... Does this work?

Nope!
Reason #1... What is there to control the next iteration of the ‘for’ loop?
Reason #2... How do we say: ‘\(S = 0 \)’?
Need a way to store partial sums! ...
Circuits with STATE (e.g., register)

Need a Logic Block that will:
1. store output (partial sum) for a while,
2. until we tell it to update with a new value.

Register Details...What’s in it anyway?

- n instances of a “Flip-Flop”, called that
because the output flips and flops between 0, 1
- D is “data”
- Q is “output”
- Also called “d-q Flip-Flop”, “d-type Flip-Flop”

What’s the timing of a Flip-flop? (1/2)

- Edge-triggered D-type flip-flop
 - This one is “positive edge-triggered”
 - “On the rising edge of the clock, the input \(d \) is sampled and transferred to the output. At all other times, the input \(d \) is ignored.”

What’s the timing of a Flip-flop? (2/2)

- Edge-triggered D-type flip-flop
 - This one is “positive edge-triggered”
 - “On the rising edge of the clock, the input \(d \) is sampled and transferred to the output. At all other times, the input \(d \) is ignored.”

Bus a bunch of D FFs together...

- Register of size \(N \):
 - \(n \) instances of D Flip-Flop

Second try...How about this? Yep!

- Rough timing...
Peer Instruction 1

• Simplify the following Boolean algebra equation:

 \[Q = \neg(A \cdot B) + \neg(A \cdot C) \]

 • Use algebra, individual steps, etc.
 • Don't just look at it and figure it out, or I'll have to start using harder examples. ☺

Administrivia

• HW 45 due Monday
• Project 2 will be released soon

• If you want to get a little bit ahead (in a moderately fun sort of way), start playing with Logisim:
 • http://ozark.hendrix.edu/~burch/logisim/
Clocks

- Need a regular oscillator:

- Wire up three inverters in feedback?...
 - Not stable enough
 - 1->0 and 0->1 transitions not symmetric.

- Solution: Base oscillation on a natural resonance. But of what?

Clocks

- Crystals and the Piezoelectric effect:
 - Voltage \rightarrow deformation \rightarrow voltage \rightarrow ...
 - Deformations have a resonant freq.
 - Function of crystal cut

Clocks

- Controller puts AC across crystal:
 - At anything but resonant freq \rightarrow
 destructive interference
 - Resonant freq \rightarrow CONSTRUCTIVE!

FSMs

- With state elements, we can build circuits whose output is a function of inputs and current state.

 - State transitions will occur on clock edges.
Finite State Machine Example: 3 ones...

Draw the FSM...

<table>
<thead>
<tr>
<th>PS</th>
<th>Input</th>
<th>NS</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>01</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>00</td>
<td>1</td>
</tr>
</tbody>
</table>

Hardware Implementation of FSM

Peer Instruction 2

- Two bit counter:
 - 4 States: 0, 1, 2, 3
 - When input c is high, go to next state - (3->0)
 - When input is low, don’t change state
 - On the transition from state 3 to state 0, output a 1. At all other times, output 0.