Outline

- Buses
- Networks
- Disks

Buses in a PC: connect a few devices (2002)

- Data rates (P4)
 - Memory: 400 MHz, 8 bytes \(\Rightarrow 3.2 \text{ GB/s (peak)} \)
 - PCI: 100 MHz, 8 bytes wide \(\Rightarrow 0.8 \text{ GB/s (peak)} \)
 - SCSI: “Ultra4” (160 MHz), “Wide” (2 bytes) \(\Rightarrow 0.3 \text{ GB/s (peak)} \)
 - Ethernet: Gigabit \(\Rightarrow 0.125 \text{ GB/s (peak)} \)

Main components of Intel Chipset: Pentium II/III

- Northbridge:
 - Handles memory
 - Graphics
- Southbridge: I/O
 - PCI bus
 - Disk controllers
 - USB controllers
 - Audio
 - Serial I/O
 - Interrupt controller
 - Timers

A Three-Bus System (+ backside cache)

- A small number of backplane buses tap into the processor-memory bus
 - FSB bus is only used for processor-memory traffic
 - I/O buses are connected to the backplane bus (PCI)
 - Advantage: load on the FSB is greatly reduced

What is DMA (Direct Memory Access)?

- Typical I/O devices must transfer large amounts of data to memory of processor:
 - Disk must transfer complete block
 - Large packets from network
 - Regions of frame buffer
- DMA gives external device ability to access memory directly:
 - much lower overhead than having processor request one word at a time.
- Issue: Cache coherence:
 - What if I/O devices write data that is currently in processor Cache?
 - The processor may never see new data!
 - Solutions:
 - Flush cache on every I/O operation (expensive)
 - Have hardware invalidate cache lines ("Coherence" cache misses?)
Outline

• Buses
• Networks
• Disks

Why Networks?

• Originally sharing I/O devices between computers (e.g., printers)
• Then Communicating between computers (e.g., file transfer protocol)
• Then Communicating between people (e.g., email)
• Then Communicating between networks of computers ⇒ p2p File sharing, WWW, …

How Big is the Network (1999)?

~30 Computers in 271 Soda
~400 in inst.cs.berkeley.edu
~4,000 in eecs&cs.berkeley.edu
~50,000 in berkeley.edu
~5,000,000 in .edu
~46,000,000 in US (.com .net .edu .mil .us .org)
~56,000,000 in the world

Source: Internet Software Consortium

Growth Rates

<table>
<thead>
<tr>
<th>Year</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>3 mb/s</td>
</tr>
<tr>
<td>1990</td>
<td>10 mb/s</td>
</tr>
<tr>
<td>1997</td>
<td>100 mb/s</td>
</tr>
<tr>
<td>1999</td>
<td>1000 mb/s</td>
</tr>
<tr>
<td>2004</td>
<td>10 Gig E</td>
</tr>
</tbody>
</table>

Typical Types of Networks

• **Local Area Network (Ethernet)**
 • Inside a building: Up to 1 km
 • (peak) Data Rate: 10 Mbits/sec, 100 Mbits/sec, 10Gbits/sec (1.25, 12.5, 1250 MBytes/s)
 • Run, installed by network administrators

• **Wide Area Network**
 • Across a continent (10km to 10000 km)
 • (peak) Data Rate: 1.5 Mb/s to >10000 Mb/s
 • Run, installed by telecommunications companies (Sprint, UUNet[MCI], AT&T)

• **Wireless Networks**
ABCs of Networks: 2 Computers

- **Starting Point:** Send bits between 2 computers

 - Queue (First In First Out) on each end
 - Can send both ways (“Full Duplex”)
 - Information sent called a "message"
 - Note: Messages also called *packets*

A Simple Example: 2 Computers

- **What is Message Format?**
 - Similar idea to Instruction Format
 - Fixed size? Number bits?

 - **Length:** Data
 - 8 bit
 - 32 x Length bits

 - **Header (Trailer):** information to deliver message
 - **Payload:** data in message
 - **What can be in the data?**
 - anything that you can represent as bits
 - values, chars, commands, addresses...

Questions About Simple Example

- **What if more than 2 computers want to communicate?**
 - Need computer "address field" in packet to know which computer should receive it (destination), and to which computer it came from for reply (source) [just like envelopes!]

 Dest. Source Len
 - Net ID Net ID CMD/ Address /Data
 - 8 bits 8 bits 8 bits 32xn bits
 - Header Payload

- **Switches and routers interpret the header in order to deliver the packet**

 - **Source encodes and destination decodes content of the payload**

Questions About Simple Example

- **What if message is garbled in transit?**
 - Add redundant information that is checked when message arrives to be sure it is OK

 - 8-bit sum of other bytes: called “Check sum”; upon arrival compare check sum to sum of rest of information in message

ABCs: many computers

 - switches and routers interpret the header in order to deliver the packet

 - source encodes and destination decodes content of the payload

Questions About Simple Example

- **What if message never arrives?**

 - Receiver tells sender when it arrives (ack) [ala registered mail], sender retries if waits too long

 - Don’t discard message until get “ACK” (for ACKnowledgment);
 Also, if check sum fails, don’t send ACK

Questions About Simple Example

- Math 55 talks about what a Check sum is...
Observations About Simple Example

- Simple questions such as those above lead to more complex procedures to send/receive message and more complex message formats
- **Protocol**: algorithm for properly sending and receiving messages (packets)

Software Protocol to Send and Receive

- **SW Send steps**
 1. Application copies data to OS buffer
 2. OS calculates checksum, starts timer
 3. OS sends data to network interface HW and says start

- **SW Receive steps**
 1. OS copies data from network interface HW to OS buffer
 2. OS calculates checksum, if OK, send ACK; if not, delete message (sender resends when timer expires)
 3. If OK, OS copies data to user address space, & signals application to continue

Protocol for Networks of Networks?

- **Internetworking**: allows computers on independent and incompatible networks to communicate reliably and efficiently;
 - Enabling technologies: SW standards that allow reliable communications without reliable networks
 - Hierarchy of SW layers, giving each layer responsibility for portion of overall communications task, called **protocol families** or **protocol suites**
 - **Abstraction** to cope with complexity of communication vs. Abstraction for complexity of computation

Protocol Family Concept

- Key to protocol families is that communication occurs **logically** at the same level of the protocol, called peer-to-peer...
 - ...but is implemented via services at the next lower level
- **Encapsulation**: carry higher level information within lower level “envelope”
- **Fragmentation**: break packet into multiple smaller packets and reassemble

Protocol for Network of Networks

- **Transmission Control Protocol/Internet Protocol (TCP/IP)**
 - This protocol family is the basis of the Internet, a WAN protocol
 - IP makes best effort to deliver
 - TCP guarantees delivery
 - TCP/IP so popular it is used even when communicating locally: even across homogeneous LAN
TCP/IP packet, Ethernet packet, protocols

- Application sends message
- TCP breaks into 64KB segments, adds 20B header
- IP adds 20B header, sends to network
- If Ethernet, broken into 1500B packets with headers, trailers (24B)
- All Headers, trailers have length field, destination,

Overhead vs. Bandwidth

- Networks are typically advertised using peak bandwidth of network link: e.g., 100 Mbits/sec Ethernet (“100 base T”)
- Software overhead to put message into network or get message out of network often limits useful bandwidth
- Assume overhead to send and receive = 320 microseconds (µs), want to send 1000 Bytes over “100 Mbit/s” Ethernet
 - Network transmission time: $1000\text{B} \times 8\text{b/B} / 100\text{Mb/s} = 8000\text{b} / (100\text{b/µs}) = 80\text{ µs}$
 - Effective bandwidth: $8000\text{b} / (320+80)\text{ µs} = 20\text{ Mb/s}$

Shared vs. Switched Based Networks

- Shared Media vs. Switched: in switched, pairs (“point-to-point” connections) communicate at same time; shared 1 at a time
- Aggregate bandwidth (BW) in switched network is many times shared:
 - point-to-point faster since no arbitration, simpler interface

Network Summary

- Protocol suites allow heterogeneous networking
 - Another form of principle of abstraction
 - Protocols ⇒ operation in presence of failures
 - Standardization key for LAN, WAN
- Integrated circuit (“Moore’s Law”) revolutionizing network switches as well as processors
 - Switch just a specialized computer
- Trend from shared to switched networks to get faster links and scalable bandwidth

Outline

- Buses
- Networks
- Disks

Magnetic Disks

- Purpose:
 - Long-term, nonvolatile, inexpensive storage for files
 - Large, inexpensive, slow level in the memory hierarchy (discuss later)
Photo of Disk Head, Arm, Actuator

- Actuator
- Arm
- Head
- Pratters (12)

Disk Device Terminology

- Several **platters**, with information recorded magnetically on both **surfaces** (usually)
- Bits recorded in **tracks**, which in turn divided into **sectors** (e.g., 512 Bytes)
- **Actuator** moves **head** (end of **arm**) over track (**seek**), wait for sector rotate under **head**, then read or write

Disk Device Performance

- **Disk Latency** = Seek Time + Rotation Time + Transfer Time + Controller Overhead
 - Seek Time? depends no. tracks move arm, seek speed of disk
 - Rotation Time? depends on speed disk rotates, how far sector is from head
 - Transfer Time? depends on data rate (bandwidth) of disk (bit density), size of request

Data Rate: Inner vs. Outer Tracks

- To keep things simple, originally same # of sectors/track
 - Since outer track longer, lower bits per inch
- Competition decided to keep bits/inch (BPI) high for all tracks (**constant bit density**)
 - More capacity per disk
 - More sectors per track towards edge
 - Since disk spins at constant speed, outer tracks have faster data rate
 - Bandwidth outer track 1.7X inner track!

Disk Performance Model /Trends

- **Capacity**: + 100% / year (2X / 1.0 yrs)
 Over time, grown so fast that # of platters has reduced (some even use only 1 now!)
- **Transfer rate (BW)**: + 40%/yr (2X / 2 yrs)
- **Rotation+Seek time**: – 8%/yr (1/2 in 10 yrs)
- **Areal Density**
 - Bits recorded along a track: **Bits/Inch** (BPI)
 - # of tracks per surface: **Tracks/Inch** (TPI)
 - We care about bit density per unit area **Bits/Inch**²
 - Called **Areal Density** = BPI x TPI
- **MB/$**: > 100%/year (2X / 1.0 yrs)
 - Fewer chips + areal density

Disk History (IBM)

- **Model 3340** hard disk
 - 1.7 Mbit/sq. in
 - 14 GBytes
 - 1.7 MBytes

- **Model 3370**
 - 7.7 Mbit/sq. in
 - 0.14 GBytes
 - 2.3 GBytes

“Makers of disk drives crowd even more data into even smaller spaces”
Disk History

<table>
<thead>
<tr>
<th>Year</th>
<th>Mbit/sq in</th>
<th>GBYTEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>63</td>
<td>60</td>
</tr>
<tr>
<td>1997</td>
<td>1450</td>
<td>3090</td>
</tr>
</tbody>
</table>

Modern Disks: Barracuda 7200.7 (2004)

- 200 GB, 3.5-inch disk
- 7200 RPM; Serial ATA
- 2 platters, 4 surfaces
- 8 watts (Idle)
- 8.5 ms avg. seek
- 32 to 58 MB/s Xfer rate
- $125 = $0.625 / GB

Source: www.seagate.com;

Modern Disks: Mini Disks

- 2004 Toshiba Minidrive:
 - 2.1” x 3.1” x 0.3”
 - 40 GB, 4200 RPM, 31 MB/s, 12 ms seek
 - 20GB/inch³ !!
 - Mp3 Players

Modern Disks: 1 inch disk drive!

- 2004 Hitachi Microdrive:
 - 1.7” x 1.4” x 0.2”
 - 4 GB, 3600 RPM, 4-7 MB/s, 12 ms seek
 - 8.4 GB/inch³
 - Digital cameras, PalmPC

- 2006 MicroDrive?
 - 16 GB, 10 MB/s!
 - Assuming past trends continue

Modern Disks: << 1 inch disk drive!

- Not magnetic but …
 - 1 gig Secure digital
 - Solid State NAND Flash
 - 1.2” x 0.9” x 0.08” (!)
 - 11.6 GB/inch³

Magnetic Disk Summary

- Magnetic Disks continue rapid advance: 60%/yr capacity, 40%/yr bandwidth, slow on seek, rotation improvements, MB$/ improving 100%/yr?
- Designs to fit high volume form factor
- RAID
 - Higher performance with more disk arms per $!
 - Adds option for small # of extra disks
 - Today RAID is > $27 billion dollar industry, 80% nonPC disks sold in RAIDs; started at Cal