Outline

• Buses
• Networks
• Disks
Buses in a PC: connect a few devices (2002)

- CPU
- Memory bus (FSB)
- PCI: Internal (Backplane) I/O bus
- PCI: External I/O bus
- SCSI Interface
- Ethernet Interface
- Ethernet Local Area Network

• Data rates (P4)
 - Memory: 400 MHz, 8 bytes
 ⇒ 3.2 GB/s (peak)
 - PCI: 100 MHz, 8 bytes wide
 ⇒ 0.8 GB/s (peak)
 - SCSI: “Ultra4” (160 MHz), Gigabit “Wide” (2 bytes)
 ⇒ 0.3 GB/s (peak)

Gigabit Ethernet: 0.125 GB/s (peak)

Bus - shared medium of communication that can connect to many devices. Hierarchy!!
Main components of Intel Chipset: Pentium II/III

- **Northbridge:**
 - Handles memory
 - Graphics

- **Southbridge: I/O**
 - PCI bus
 - Disk controllers
 - USB controllers
 - Audio
 - Serial I/O
 - Interrupt controller
 - Timers
• A small number of backplane buses tap into the processor-memory bus
 • FSB bus is only used for processor-memory traffic
 • I/O buses are connected to the backplane bus (PCI)
 • Advantage: load on the FSB is greatly reduced
What is DMA (Direct Memory Access)?

- Typical I/O devices must transfer large amounts of data to memory of processor:
 - Disk must transfer complete block
 - Large packets from network
 - Regions of frame buffer

- DMA gives external device ability to access memory directly:
 - much lower overhead than having processor request one word at a time.

• Issue: Cache coherence:
 - What if I/O devices write data that is currently in processor Cache?
 - The processor may never see new data!
 - Solutions:
 - Flush cache on every I/O operation (expensive)
 - Have hardware invalidate cache lines (“Coherence” cache misses?)
Outline

• Buses
• Networks
• Disks
Why Networks?

• Originally sharing I/O devices between computers (e.g., printers)

• Then Communicating between computers (e.g., file transfer protocol)

• Then Communicating between people (e.g., email)

• Then Communicating between networks of computers ⇒ p2p File sharing, WWW, …
How Big is the Network (1999)?

~30 Computers in 271 Soda

~400 in inst.cs.berkeley.edu

~4,000 in eecs&cs.berkeley.edu

~50,000 in berkeley.edu

~5,000,000 in .edu

~46,000,000 in US

(.com .net .edu .mil .us .org)

~56,000,000 in the world

Source: Internet Software Consortium
Growth Rates

Ethernet Bandwidth
- 1983 3 mb/s
- 1990 10 mb/s
- 1997 100 mb/s
- 1999 1000 mb/s
- 2004 10 Gig E

"Source: Internet Software Consortium (http://www.isc.org/)."
What makes networks work?

- **links** connecting **switches** to each other and to computers or devices

- **ability to name** the components and to **route** packets of information - messages - from a source to a destination

- Layering, protocols, and encapsulation as means of **abstraction** (61C big idea)
Typical Types of Networks

• Local Area Network (Ethernet)
 • Inside a building: Up to 1 km
 • (peak) Data Rate: 10 Mbits/sec, 100 Mbits/sec, 10 Gbits/sec (1.25, 12.5, 1250 MBytes/s)
 • Run, installed by network administrators

• Wide Area Network
 • Across a continent (10km to 10000 km)
 • (peak) Data Rate: 1.5 Mb/s to >10000 Mb/s
 • Run, installed by telecommunications companies (Sprint, UUNet[MCI], AT&T)

Wireless Networks
ABCs of Networks: 2 Computers

• Starting Point: Send bits between 2 computers

Queue (First In First Out) on each end
Can send both ways ("Full Duplex")
Information sent called a "message"
• Note: Messages also called packets
A Simple Example: 2 Computers

• What is Message Format?
 • Similar idea to Instruction Format
 • Fixed size? Number bits?

```
Length | Data
8 bit   | 32 x Length bits
```

• **Header(Trailer):** information to deliver message
• **Payload:** data in message

• What can be in the data?
 • anything that you can represent as bits
 • values, chars, commands, addresses...
Questions About Simple Example

- What if more than 2 computers want to communicate?

 - Need computer **"address field"** in packet to know which computer should receive it (destination), and to which computer it came from for reply (source) [just like envelopes!]

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Source</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net ID</td>
<td>Net ID</td>
<td>CMD/ Address/Data</td>
</tr>
</tbody>
</table>

| 8 bits | 8 bits | 8 bits | 32xn bits |

| Header | Payload |
ABCs: many computers

- switches and routers interpret the header in order to deliver the packet
- source encodes and destination decodes content of the payload
Questions About Simple Example

• What if message is garbled in transit?

• Add redundant information that is checked when message arrives to be sure it is OK

• 8-bit sum of other bytes: called “Check sum”; upon arrival compare check sum to sum of rest of information in message

Math 55 talks about what a Check sum is…
Questions About Simple Example

• What if message never arrives?

• Receiver tells sender when it arrives (ack) [ala registered mail], sender retries if waits too long

• Don’t discard message until get “ACK” (for ACKnowledgment); Also, if check sum fails, don’t send ACK

Net ID | Net ID | Len | ACK | INFO | CMD/ Address | /Data | Checksum

Header | Payload | Trailer
Observations About Simple Example

• Simple questions such as those above lead to more complex procedures to send/receive message and more complex message formats

• **Protocol**: algorithm for properly sending and receiving messages (packets)
Software Protocol to Send and Receive

• SW Send steps
 1: Application copies data to OS buffer
 2: OS calculates checksum, starts timer
 3: OS sends data to network interface HW and says start

• SW Receive steps
 3: OS copies data from network interface HW to OS buffer
 2: OS calculates checksum, if OK, send ACK; if not, delete message (sender resends when timer expires)
 1: If OK, OS copies data to user address space, & signals application to continue
Protocol for Networks of Networks?

- **Internetworking**: allows computers on independent and incompatible networks to communicate reliably and efficiently;
 - Enabling technologies: SW standards that allow reliable communications without reliable networks
 - Hierarchy of SW layers, giving each layer responsibility for portion of overall communications task, called protocol families or protocol suites
- **Abstraction** to cope with complexity of communication vs. Abstraction for complexity of computation
Protocol Family Concept

Message

 Logical

Actual

HH Message TT

Logical

Message

Actual

HH Message TT

Physical

HH Message TT
Protocol Family Concept

• Key to protocol families is that communication occurs logically at the same level of the protocol, called peer-to-peer...

…but is implemented via services at the next lower level

• Encapsulation: carry higher level information within lower level “envelope”

• Fragmentation: break packet into multiple smaller packets and reassemble
Protocol for Network of Networks

- **Transmission Control Protocol/Internet Protocol (TCP/IP)**
 - This protocol family is the **basis of the Internet**, a WAN protocol
 - IP makes best effort to deliver
 - TCP guarantees delivery
 - TCP/IP so popular it is used even when communicating locally: even across homogeneous LAN
TCP/IP packet, Ethernet packet, protocols

- Application sends message
- TCP breaks into 64KB segments, adds 20B header
- IP adds 20B header, sends to network
- If Ethernet, broken into 1500B packets with headers, trailers (24B)
- All Headers, trailers have length field, destination,
Overhead vs. Bandwidth

- Networks are typically advertised using peak bandwidth of network link: e.g., 100 Mbits/sec Ethernet ("100 base T")
- Software overhead to put message into network or get message out of network often limits useful bandwidth
- Assume overhead to send and receive = 320 microseconds (µs), want to send 1000 Bytes over "100 Mbit/s" Ethernet
 - Network transmission time: 1000Bx8b/B / 100Mb/s = 8000b / (100b/µs) = 80 µs
 - Effective bandwidth: 8000b/(320+80)µs = 20 Mb/s
Shared vs. Switched Based Networks

- **Shared Media vs. Switched**: in switched, pairs ("point-to-point" connections) communicate at same time; shared 1 at a time

- **Aggregate bandwidth (BW)** in switched network is many times shared:
 - point-to-point faster since no arbitration, simpler interface
Network Summary

• Protocol suites allow heterogeneous networking
 • Another form of principle of abstraction
 • Protocols \Rightarrow operation in presence of failures
 • Standardization key for LAN, WAN

• Integrated circuit (“Moore’s Law”) revolutionizing network switches as well as processors
 • Switch just a specialized computer

• Trend from shared to switched networks to get faster links and scalable bandwidth
Outline

• Buses
• Networks
• Disks
Magnetic Disks

- Purpose:
 - Long-term, nonvolatile, inexpensive storage for files
 - Large, inexpensive, slow level in the memory hierarchy (discuss later)
Photo of Disk Head, Arm, Actuator

- Spindle
- Arm
- Head
- Actuator
- Platters (12)
Disk Device Terminology

- Several **platters**, with information recorded magnetically on both **surfaces** (usually)

- Bits recorded in **tracks**, which in turn divided into **sectors** (e.g., 512 Bytes)

- **Actuator** moves **head** (end of **arm**) over track ("seek"), wait for **sector** rotate under **head**, then read or write
Disk Device Performance

- Disk Latency = Seek Time + Rotation Time + Transfer Time + Controller Overhead

 - Seek Time? depends on no. tracks move arm, seek speed of disk

 - Rotation Time? depends on speed disk rotates, how far sector is from head

 - Transfer Time? depends on data rate (bandwidth) of disk (bit density), size of request
Data Rate: Inner vs. Outer Tracks

- To keep things simple, originally same # of sectors/track
 - Since outer track longer, lower bits per inch

- Competition decided to keep bits/inch (BPI) high for all tracks ("constant bit density")
 - More capacity per disk
 - More sectors per track towards edge
 - Since disk spins at constant speed, outer tracks have faster data rate

- Bandwidth outer track 1.7X inner track!
Disk Performance Model /Trends

- **Capacity**: + 100% / year (2X / 1.0 yrs)
 Over time, grown so fast that # of platters has reduced (some even use only 1 now!)

- **Transfer rate (BW)**: + 40%/yr (2X / 2 yrs)

- **Rotation+Seek time**: – 8%/yr (1/2 in 10 yrs)

- **Areal Density**
 - Bits recorded along a track: **Bits/Inch** (BPI)
 - # of tracks per surface: **Tracks/Inch** (TPI)
 - We care about **bit density per unit area** **Bits/Inch^2**
 - Called **Areal Density** = BPI x TPI

- **MB/$**: > 100%/year (2X / 1.0 yrs)
 - Fewer chips + areal density
Disk History (IBM)

<table>
<thead>
<tr>
<th>Year</th>
<th>Data Density (Mbit/sq. in.)</th>
<th>Capacity (GBytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973</td>
<td>1.7</td>
<td>0.14</td>
</tr>
<tr>
<td>1979</td>
<td>7.7</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Source: New York Times, 2/23/98, page C3, “Makers of disk drives crowd even more data into even smaller spaces”
Disk History

1989: 63 Mbit/sq. in 60 GBytes
1997: 1450 Mbit/sq. in 2.3 GBytes
1997: 3090 Mbit/sq. in 8.1 GBytes

Modern Disks: Barracuda 7200.7 (2004)

- 200 GB, 3.5-inch disk
- 7200 RPM; Serial ATA
- 2 platters, 4 surfaces
- 8 watts (idle)
- 8.5 ms avg. seek
- 32 to 58 MB/s Xfer rate
- $125 = $0.625 / GB

source: www.seagate.com;
Modern Disks: Mini Disks

• 2004 Toshiba Minidrive:
 • 2.1” x 3.1” x 0.3”
 • 40 GB, 4200 RPM, 31 MB/s, 12 ms seek
 • 20GB/inch³ !!
 • Mp3 Players
Modern Disks: 1 inch disk drive!

- **2004 Hitachi Microdrive:**
 - 1.7” x 1.4” x 0.2”
 - 4 GB, 3600 RPM, 4-7 MB/s, 12 ms seek
 - 8.4 GB/inch³
 - Digital cameras, PalmPC

- **2006 MicroDrive?**
 - 16 GB, 10 MB/s!
 - Assuming past trends continue
Modern Disks: << 1 inch disk drive!

• Not magnetic but …

• 1gig Secure digital
 • Solid State NAND Flash
 • 1.2” x 0.9” x 0.08” (!!)
 • 11.6 GB/inch³
Magnetic Disk Summary

- Magnetic Disks continue rapid advance: 60%/yr capacity, 40%/yr bandwidth, slow on seek, rotation improvements, MB/$ improving 100%/yr?
 - Designs to fit high volume form factor

- RAID
 - Higher performance with more disk arms per $
 - Adds option for small # of extra disks
 - Today RAID is > $27 billion dollar industry, 80% nonPC disks sold in RAID; started at Cal