Quote of the day

“95% of the folks out there are completely clueless about floating-point.”

James Gosling
Sun Fellow
Java Inventor
1998-02-28
Review of Numbers

• Computers are made to deal with numbers

• What can we represent in N bits?
 • Unsigned integers:
 0 to $2^N - 1$
 • Signed Integers (Two’s Complement)
 $-2^{(N-1)}$ to $2^{(N-1)} - 1$
Other Numbers

• What about other numbers?
 • Very large numbers? (seconds/century)
 \[3,155,760,000_{10} \ (3.15576_{10} \times 10^9) \]
 • Very small numbers? (atomic diameter)
 \[0.00000001_{10} \ (1.0_{10} \times 10^{-8}) \]
 • Rationals (repeating pattern)
 \[\frac{2}{3} \quad (0.6666666666\ldots) \]
 • Irrationals
 \[2^{1/2} \quad (1.414213562373\ldots) \]
 • Transcendentals
 \[e \ (2.718\ldots), \ \pi \ (3.141\ldots) \]

• All represented in scientific notation
Scientific Notation (in Decimal)

- Mantissa
- Exponent
- Decimal point
- Radix (base)

Normalized form: no leadings 0s (exactly one digit to left of decimal point)

Alternatives to representing 1/1,000,000,000

- Normalized: 1.0×10^{-9}
- Not normalized: $0.1 \times 10^{-8}, 10.0 \times 10^{-10}$
Scientific Notation (in Binary)

- Normalized mantissa always has exactly one “1” before the point.
- Computer arithmetic that supports it called floating point, because it represents numbers where binary point is not fixed, as it is for integers.
- Declare such variable in C as float
Floating Point Representation (1/2)

- Normal format: \(+1.xxxxxxxxxxxx_{two} \times 2^{yyyy}_{two}\)
- Multiple of Word Size (32 bits):

```
31 30  23 22  0
 S | Exponent | Significand
 1 bit  8 bits  23 bits
```

- \(S\) represents Sign
- Exponent represents \(y\)’s
- Significand represents \(x\)’s

Represent numbers as small as \(2.0 \times 10^{-38}\) to as large as \(2.0 \times 10^{38}\)
Floating Point Representation (2/2)

• What if result too large? (> 2.0×10^{38})
 • **Overflow!**
 • Overflow \Rightarrow Exponent larger than represented in 8-bit Exponent field

• What if result too small? (>0, < 2.0×10^{-38})
 • **Underflow!**
 • Underflow \Rightarrow Negative exponent larger than represented in 8-bit Exponent field

• How to reduce chances of overflow or underflow?
Double Precision Fl. Pt. Representation

- **Next Multiple of Word Size (64 bits)**

<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>20</th>
<th>19</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Exponent</td>
<td>Significand</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Double Precision** (vs. Single Precision)
 - C variable declared as `double`
 - Represent numbers almost as small as 2.0×10^{-308} to almost as large as 2.0×10^{308}
 - But primary advantage is greater accuracy due to larger significand
QUAD Precision Fl. Pt. Representation

- Next Multiple of Word Size (128 bits)
- Unbelievable range of numbers
- Unbelievable precision (accuracy)
- This is currently being worked on
- The version in progress has 15 bits for the exponent and 112 bits for the significand
IEEE 754 Floating Point Standard (1/4)

• Single Precision, DP similar

• Sign bit: 1 means negative
 0 means positive

• Significand:
 • To pack more bits, leading 1 implicit for
 normalized numbers
 • 1 + 23 bits single, 1 + 52 bits double

• Note: 0 has no leading 1, so reserve
 exponent value 0 just for number 0
IEEE 754 Floating Point Standard (2/4)

- Kahan wanted FP numbers to be used even if no FP hardware; e.g., sort records with FP numbers using integer compares

- Could break FP number into 3 parts: compare signs, then compare exponents, then compare significands

- Wanted it to be faster, single compare if possible, especially if positive numbers

- Then want order:
 - Highest order bit is sign (negative < positive)
 - Exponent next, so big exponent => bigger #
 - Significand last: exponents same => bigger #
IEEE 754 Floating Point Standard (3/4)

- Negative Exponent?
 - 2’s comp? 1.0×2^{-1} v. $1.0 \times 2^{+1}$ ($1/2$ v. 2)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1111 1111</th>
<th>000 0000 0000 0000 0000 0000 0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0000 0001</td>
<td>000 0000 0000 0000 0000 0000 0000</td>
</tr>
</tbody>
</table>

- This notation using integer compare of $1/2$ v. 2 makes $1/2 > 2$!
- Instead, pick notation 0000 0001 is most negative, and 1111 1111 is most positive

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0111 1110</th>
<th>000 0000 0000 0000 0000 0000 0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1000 0000</td>
<td>000 0000 0000 0000 0000 0000 0000</td>
</tr>
</tbody>
</table>

- 1.0×2^{-1} v. $1.0 \times 2^{+1}$ ($1/2$ v. 2)
IEEE 754 Floating Point Standard (4/4)

• Called **Biased Notation**, where bias is number subtracted to get real number

 • IEEE 754 uses bias of 127 for single prec.

 • Subtract 127 from Exponent field to get actual value for exponent

• **Summary (single precision):**

 31 30 23 22 0

<table>
<thead>
<tr>
<th>S</th>
<th>Exponent</th>
<th>Significand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bit</td>
<td>8 bits</td>
<td>23 bits</td>
</tr>
</tbody>
</table>

 - \((-1)^S \times (1 + \text{Significand}) \times 2^{(\text{Exponent}-127)}\)

 • Double precision identical, except with exponent bias of 1023
Is this floating point number:

> 0?
= 0?
< 0?
Understanding the Significand (1/2)

• Method 1 (Fractions):
 • In decimal: $0.340_{10} \Rightarrow \frac{340}{1000}_{10} \Rightarrow \frac{34}{100}_{10}$
 • In binary: $0.110_2 \Rightarrow \frac{110}{1000}_2 = \frac{6}{8}_{10} \Rightarrow \frac{11}{100}_2 = \frac{3}{4}_{10}$
 • Advantage: less purely numerical, more thought oriented; this method usually helps people understand the meaning of the significand better
Understanding the Significand (2/2)

• Method 2 (Place Values):
 • Convert from scientific notation
 • In decimal: $1.6732 = (1 \times 10^0) + (6 \times 10^{-1}) + (7 \times 10^{-2}) + (3 \times 10^{-3}) + (2 \times 10^{-4})$
 • In binary: $1.1001 = (1 \times 2^0) + (1 \times 2^{-1}) + (0 \times 2^{-2}) + (0 \times 2^{-3}) + (1 \times 2^{-4})$
 • Interpretation of value in each position extends beyond the decimal/binary point
 • Advantage: good for quickly calculating significand value; use this method for translating FP numbers
Example: Converting Binary FP to Decimal

```
0 0110 1000 101 0101 0100 0011 0100 0010
```

• Sign: 0 => positive

• Exponent:
 - 0110 1000\text{two} = 104\text{ten}
 - Bias adjustment: $104 - 127 = -23$

• Significand:
 - $1 + 1\times2^{-1} + 0\times2^{-2} + 1\times2^{-3} + 0\times2^{-4} + 1\times2^{-5} +...$
 - $= 1 + 2^{-1} + 2^{-3} + 2^{-5} + 2^{-7} + 2^{-9} + 2^{-14} + 2^{-15} + 2^{-17} + 2^{-22}$
 - $= 1.0\text{ten} + 0.666115\text{ten}$

• Represents: $1.666115\text{ten} \times 2^{-23} \sim 1.986 \times 10^{-7}$
 (about $2/10,000,000$)
Peer Instruction #1

What is the decimal equivalent of this floating point number?

\[1 \ 1000 \ 0001 \ 111 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000\]
What is the decimal equivalent of:

\[
(-1)^s \times (1 + \text{Significand}) \times 2^{(\text{Exponent}-127)}
\]

\[
(-1)^1 \times (1 + .111) \times 2^{(129-127)}
\]

\[
-1 \times (1.111) \times 2^2
\]

\[
-111.1
\]

\[
-7.5
\]

1: -1.75
2: -3.5
3: -3.75
4: -7
5: -7.5
6: -15
7: -7 \times 2^{129}
8: -129 \times 2^7
Converting Decimal to FP (1/3)

• Simple Case: If denominator is an exponent of 2 (2, 4, 8, 16, etc.), then it’s easy.

• Show MIPS representation of -0.75
 • -0.75 = -3/4
 • -11_{two}/100_{two} = -0.11_{two}
 • Normalized to -1.1_{two} \times 2^{-1}
 • (-1)^S \times (1 + \text{Significand}) \times 2^{(\text{Exponent}-127)}
 • (-1)^1 \times (1 + .100 0000 ... 0000) \times 2^{(126-127)}

\[\begin{array}{ccccccccc}
 & 1 & 0111 & 1110 & 100 & 0000 & 0000 & 0000 & 0000 \\
\end{array} \]
Converting Decimal to FP (2/3)

• Not So Simple Case: If denominator is not an exponent of 2.
 • Then we can’t represent number precisely, but that’s why we have so many bits in significand: for precision
 • Once we have significand, normalizing a number to get the exponent is easy.
 • So how do we get the significand of a never-ending number?
Converting Decimal to FP (3/3)

• Fact: All rational numbers have a repeating pattern when written out in decimal.

• Fact: This still applies in binary.

• To finish conversion:
 • Write out binary number with repeating pattern.
 • Cut it off after correct number of bits (different for single v. double precision).
 • Derive Sign, Exponent and Significand fields.
Example: Representing $1/3$ in MIPS

$1/3$

$= 0.33333\ldots_{10}$

$= 0.25 + 0.0625 + 0.015625 + 0.00390625 + \ldots$

$= 1/4 + 1/16 + 1/64 + 1/256 + \ldots$

$= 2^{-2} + 2^{-4} + 2^{-6} + 2^{-8} + \ldots$

$= 0.0101010101\ldots_{2} \times 2^{0}$

$= 1.0101010101\ldots_{2} \times 2^{-2}$

• Sign: 0

• Exponent = -2 + 127 = 125 = 01111101

• Significand = 0101010101...
Administrivia

• Project 1 Due Tonight
• HW4 will be out soon
• Midterm Results (out of 45 possible):
 • Average: 31.25
 • Standard Deviation: 8
 • Median: 30.875
 • Max: 44
 • Will be handed back in discussion
IEEE Standard 754 for Binary Floating-Point Arithmetic.

1989 ACM Turing Award Winner!

Prof. Kahan

www.cs.berkeley.edu/~wkahan/
.../ieee754status/754story.html
Representation for $\pm \infty$

- In FP, divide by 0 should produce $\pm \infty$, not overflow.

- Why?
 - OK to do further computations with ∞
 E.g., $X/0 > Y$ may be a valid comparison
 - Ask math majors

- IEEE 754 represents $\pm \infty$
 - Most positive exponent reserved for ∞
 - Significands all zeroes
Representation for 0

- Represent 0?
 - exponent all zeroes
 - significand all zeroes
 - What about sign?
 - +0: 0 00000000 000000000000000000000000
 - -0: 1 00000000 000000000000000000000000

- Why two zeroes?
 - Helps in some limit comparisons
 - Ask math majors
Special Numbers

- What have we defined so far? (Single Precision)

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Significand</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>nonzero</td>
<td>???</td>
</tr>
<tr>
<td>1-254</td>
<td>anything</td>
<td>+/- fl. pt. #</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>+/- ∞</td>
</tr>
<tr>
<td>255</td>
<td>nonzero</td>
<td>???</td>
</tr>
</tbody>
</table>

- Professor Kahan had clever ideas; “Waste not, want not”

- Exp=0,255 & Sig!=0 …
Representation for Not a Number

• What is $\sqrt{-4.0}$ or $0/0$?
 • If ∞ not an error, these shouldn’t be either.
 • Called Not a Number (NaN)
 • Exponent = 255, Significand nonzero

• Why is this useful?
 • Hope NaNs help with debugging?
 • They contaminate: $\text{op}(\text{NaN},X) = \text{NaN}$
Representation for Denorms (1/2)

- **Problem:** There's a gap among representable FP numbers around 0
 - Smallest representable pos num:
 \[a = 1.0\ldots 2^{-126} = 2^{-126} \]
 - Second smallest representable pos num:
 \[b = 1.000\ldots 1 \cdot 2^{-126} = 2^{-126} + 2^{-149} \]
 \[a - 0 = 2^{-126} \]
 \[b - a = 2^{-149} \]

Normalization and implicit 1 is to blame!
Representation for Denorms (2/2)

• Solution:
 - We still haven’t used Exponent = 0, Significand nonzero
 - Denormalized number: no leading 1, implicit exponent = -126.
 - Smallest representable pos num:
 \[a = 2^{-149} \]
 - Second smallest representable pos num:
 \[b = 2^{-148} \]
Peer Instruction 2

1. Converting `float -> int -> float` produces same `float` number

2. Converting `int -> float -> int` produces same `int` number

3. FP `add` is associative:

 \[(x+y)+z = x+(y+z)\]
“And in conclusion…”

- Floating Point numbers approximate values that we want to use.

- IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers

 - Every desktop or server computer sold since ~1997 follows these conventions

 - Summary (single precision):

S	Exponent	Significand
1 bit	8 bits	23 bits

 - \((-1)^S \times (1 + \text{Significand}) \times 2^{(\text{Exponent} - 127)}\)

 - Double precision identical, bias of 1023