

Computer Technology - Dramatic Change!

Memory

• DRAM capacity: 2x / 2 years (since '96); 64x size improvement in last decade.

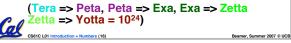
Processor

CS61C L01 Introduction + Numbers (15)

• Speed 2x / 1.5 years (since '85); 100X performance in last decade.

Disk

 Capacity: 2x / 1 year (since '97) 250X size in last decade.

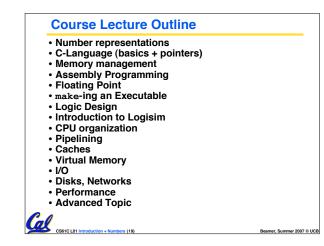

CS61C: So what's in it for me?

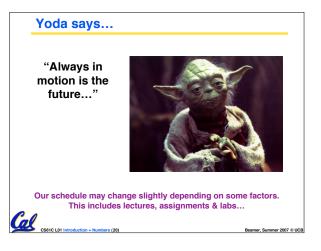
• Learn some of the big ideas in CS & engineering:

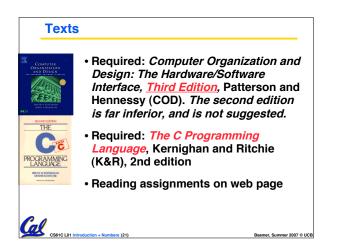
Beamer, Summer 2007 © UCB

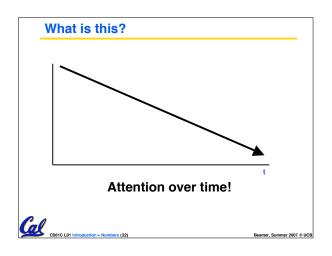
- 5 Classic components of a Computer
- Data can be anything (integers, floating point, characters): a program determines what it is
- · Stored program concept: instructions just data
- Principle of Locality, exploited via a memory hierarchy (cache)
- · Greater performance by exploiting parallelism
- Principle of abstraction, used to build systems as layers
- Compilation v. interpretation thru system layers
- · Principles/Pitfalls of Performance Measurement

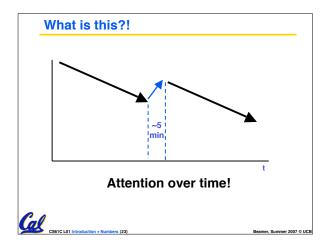
Computer Technology - Dramatic Change! We'll see that Kilo, Mega, etc. are incorrect later! • State-of-the-art PC when you graduate: (at least...) • Processor clock speed: 5000 MegaHertz (5.0 GigaHertz) • Memory capacity: 8000 MegaBytes (8.0 GigaBytes) • Disk capacity: 2000 GigaBytes (2.0 TeraBytes) • New units! Mega => Giga, Giga => Tera (Tera => Peta, Peta => Exa, Exa => Zetta

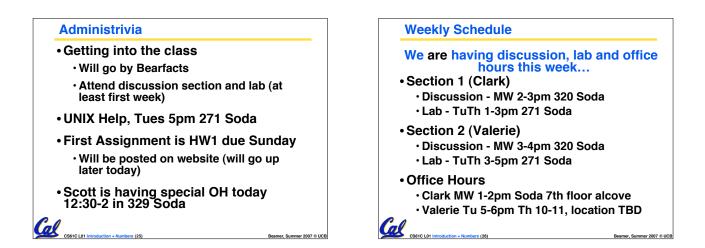

Others Skills learned in 61C

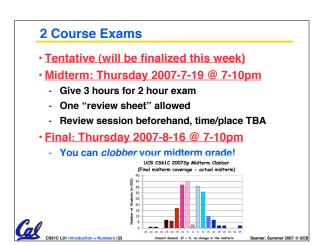

Learning C


- If you know one, you should be able to learn another programming language largely on your own
- \bullet Given that you know C++ or Java, should be easy to pick up their ancestor, C
- Assembly Language Programming
 - This is a skill you will pick up, as a side effect of understanding the Big Ideas
- Hardware design
 - We think of hardware at the abstract level, with only a little bit of physical logic to give things perspective
 CS 150, 152 teach this




Beamer, Summer 2007 @ UCE





Homeworks, Labs and Projects

- Lab exercises (2 per week; due in that lab session unless extension given by TA)
- Homework exercises (~ 1.5 every week)
- Projects (every 2 weeks)
- All exercises, reading, homeworks, projects on course web page
- We will DROP your lowest HW, Lab!
- Never have {HW, MT, Proj} due same day

Beamer, Summer 2007 © UCB

Your final grade

CS61C L01 Introduction + Numbers (27)

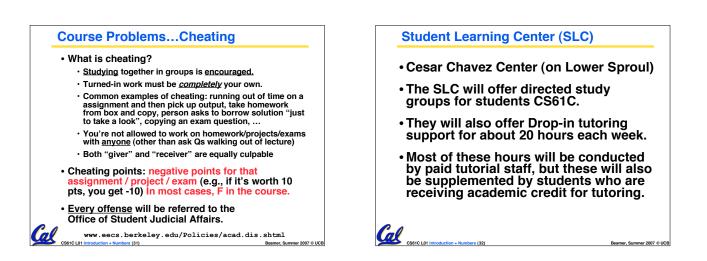
CS61C L01 Int

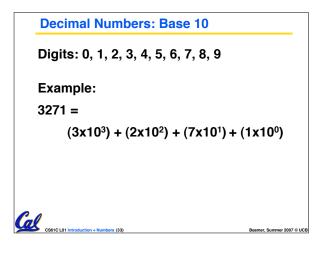
duction + Nu

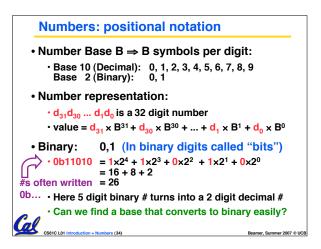
rs (29)

• Grading (could change before 1st midterm)
	5% Labs
• 30pts =	10% Homework
• 60pts =	20% Projects
• 75pts =	= 25% Midterm* [can be clobbered by Final]
 120pts 	= 40% Final
• + Ex	tra credit for EPA. What's EPA?
Grade dis	stributions
O ¹ U	

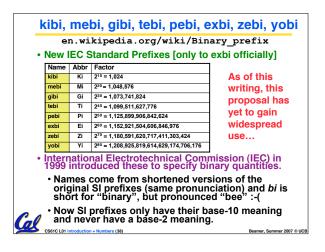
- Similar to CS61B, in the absolute scale.
- · Perfect score is 300 points. 10-20-10 for A+, A, A-
- Similar for Bs and Cs (40 pts per letter-grade)
- · ... C+, C, C-, D, F (No D+ or D- distinction)
- Differs: No F will be given if all-but-one {hw, lab}, all projects submitted and all exams taken
- We'll "ooch" grades up but never down

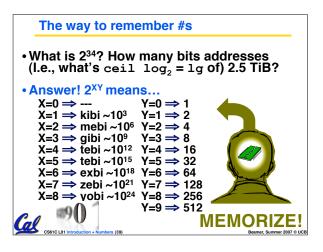

Extra Credit: EPA!


• Effort


Attending Scott's and TA's office hours, completing all assignments, turning in HW0, doing reading quizzes

- Participation
 - · Attending lecture and voting using the PRS system
 - Asking great questions in discussion and lecture and making it more interactive
- Altruism
 - · Helping others in lab or on the newsgroup

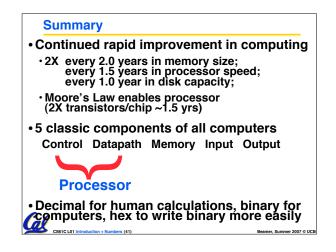




Hexadecimal Numbers: Base 16	
 Hexadecimal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F Normal digits + 6 more from the alphabet In C, written as 0x (e.g., 0xFAB5) 	=
 Conversion: Binary⇔Hex 1 hex digit represents 16 decimal values 4 binary digits represent 16 decimal value ⇒1 hex digit replaces 4 binary digits 	95
 One hex digit is a "nibble". Two is a " 	byte"
• Example:	
• 1010 1100 0011 (binary) = 0x ?	Beamer, Summer 2007 © UG

Decimal vs. Hexadecima	l vs. Bi	inary
Examples:	00 0	0000
1010 1100 0011 (binary) = 0xAC3	01 1 02 2 03 3	0001 0010 0011
10111 (binary) = 0001 0111 (binary)	04 4 05 5 06 6	0100 0101 0110
= 0001 0111 (binary) = 0x17	07 7 08 8	0111 1000
0x3F9 = 11 1111 1001 (binary)	09 9 10 A 11 B	1001 1010 1011
How do we convert between hex and Decimal?	12 C 13 D 14 E	1100 1101 1110
MEMORIZE!	15 5	1111
CS61C L01 Introduction + Numbers (36)		Beamer, Summer 2007 @ UC

Name	Abbr	non use prefixes (all SI,	SI size
Kilo	к	2 ¹⁰ = 1,024	10 ³ = 1,000
Mega	м	2 ²⁰ = 1,048,576	10 ⁶ = 1,000,000
Giga	G	230 = 1,073,741,824	109 = 1,000,000,000
Tera	Т	2 ⁴⁰ = 1,099,511,627,776	10 ¹² = 1,000,000,000,000
Peta	Р	250 = 1,125,899,906,842,624	1015 = 1,000,000,000,000,000
Exa	E	260 = 1,152,921,504,606,846,976	1018 = 1,000,000,000,000,000,000
Zetta	z	2 ⁷⁰ = 1,180,591,620,717,411,303,424	1021 = 1,000,000,000,000,000,000,000
Yotta	Y	280 = 1,208,925,819,614,629,174,706,176	1024 = 1,000,000,000,000,000,000,000,000
•	Hard	using! Common usage o bytes, but the "correct" Disk manufacturers & To nly computing groups th is advertised as a 30 GB	elecommunications are


A few mnemonics

- Kirby Messed Gigglypuff Terribly, (then) Perfectly Exterminated Zelda and Yoshi[CB]
- Kissing mediocre girls teaches people (to) expect zero (from) you [MT]
- Try to think of your own

CS61C L01 Introduction + No

- · It's a great way to learn the material
- Email me your own, and the best few will get EPA

Beamer, Summer 2007 @ UCB

