inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures

Lecture #1 – Number Representation

2007-06-25

Scott Beamer

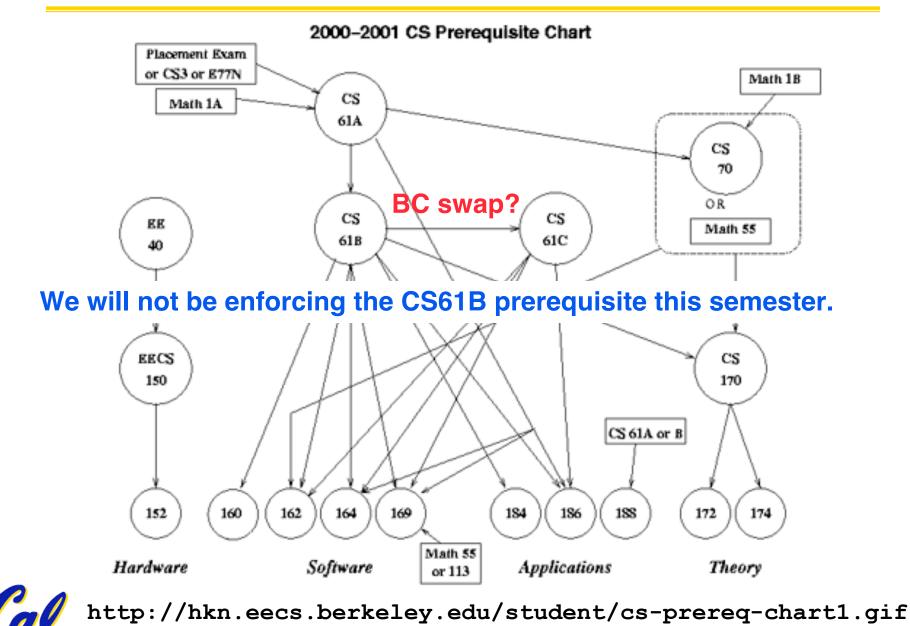
Instructor


inst.eecs.berkeley.edu/~cs61c

Valerie Ishida, TA Clark Leung, TA

CS61C L01 Introduction + Numbers (1)

"I stand on the shoulders of giants..."



Thanks to these talented folks (& many others) whose contributions have helped make 61C a really tremendous course!

CS61C L01 Introduction + Numbers (2)

Where does CS61C fit in?

Are Computers Smart?

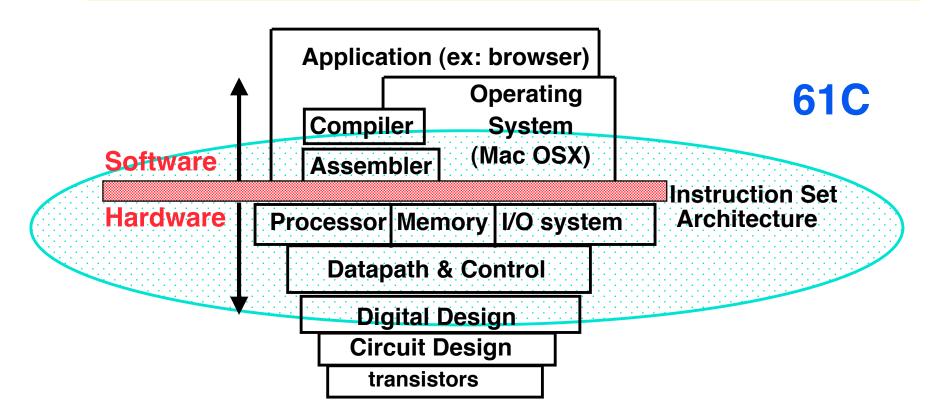
• To a programmer:

- Very complex operations / functions:
 - (map (lambda (x) (* x x)) (1 2 3 4))
- Automatic memory management:

- List l = new List;

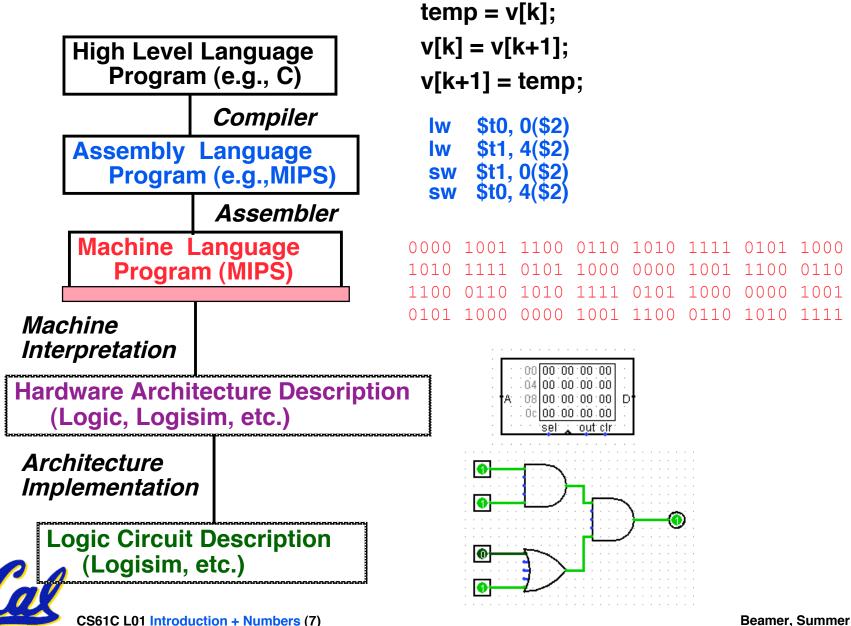
- "Basic" structures:
 - Integers, floats, characters, plus, minus, print commands

Are Computers Smart?

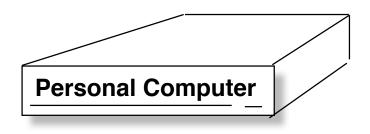

In real life:

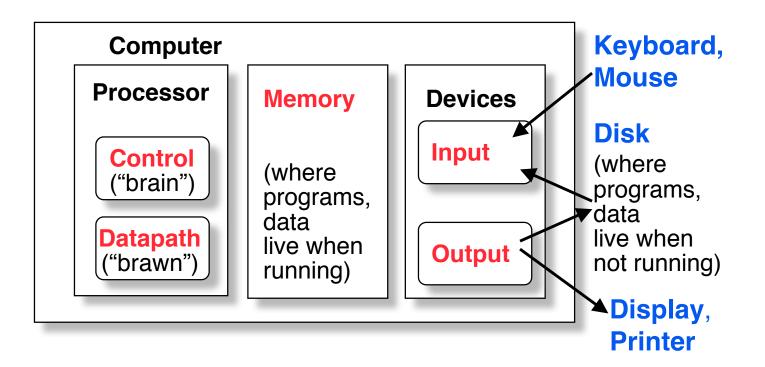
- Only a handful of operations:
 - {and, or, not}
- <u>No</u> memory management.
- Only 2 values:
 - {0, 1} or {low, high} or {off, on}

What are "Machine Structures"?



* Coordination of many

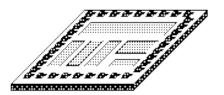

levels (layers) of abstraction



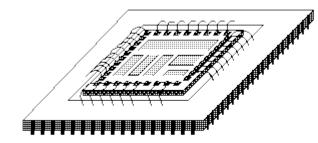
61C Levels of Representation

Anatomy: 5 components of any Computer

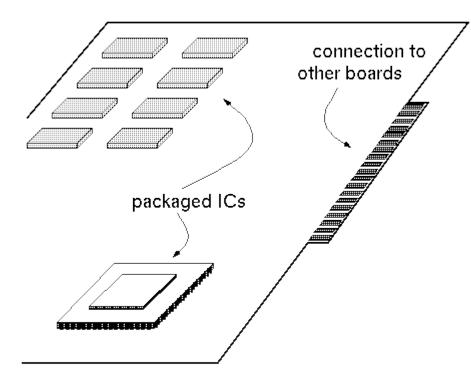
Overview of Physical Implementations


The hardware out of which we make systems.

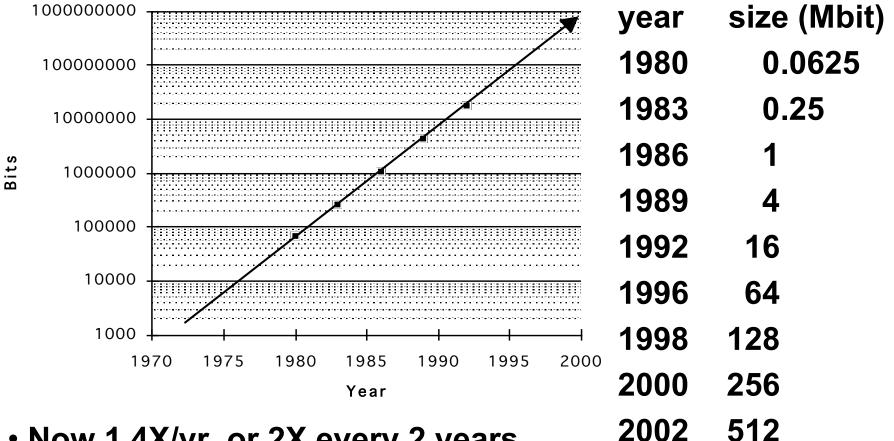
- Integrated Circuits (ICs)
 - Combinational logic circuits, memory elements, analog interfaces.
- Printed Circuits (PC) boards
 - substrate for ICs and interconnection, distribution of CLK, Vdd, and GND signals, heat dissipation.
- Power Supplies
 - Converts line AC voltage to regulated DC low voltage levels.
- Chassis (rack, card case, ...)
 - holds boards, power supply, provides physical interface to user or other systems.



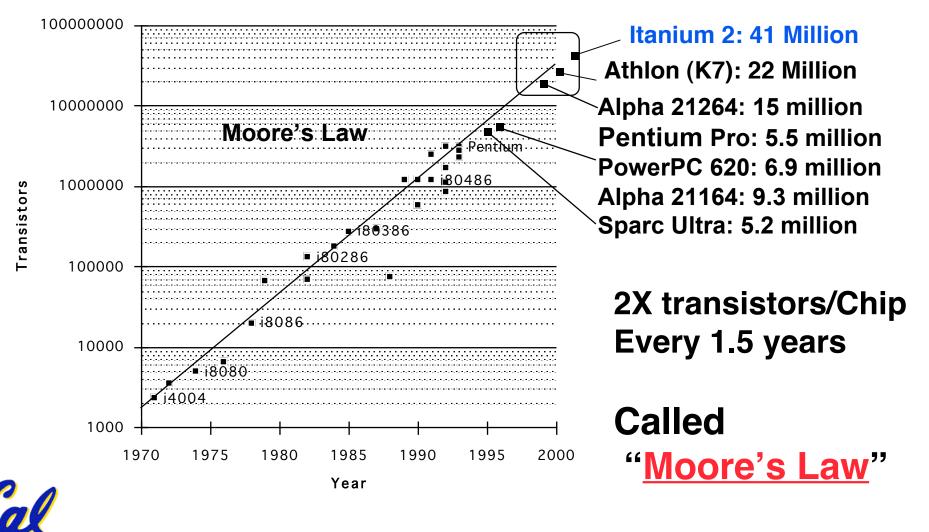
Integrated Circuits (2006 state-of-the-art)


Chip in Package

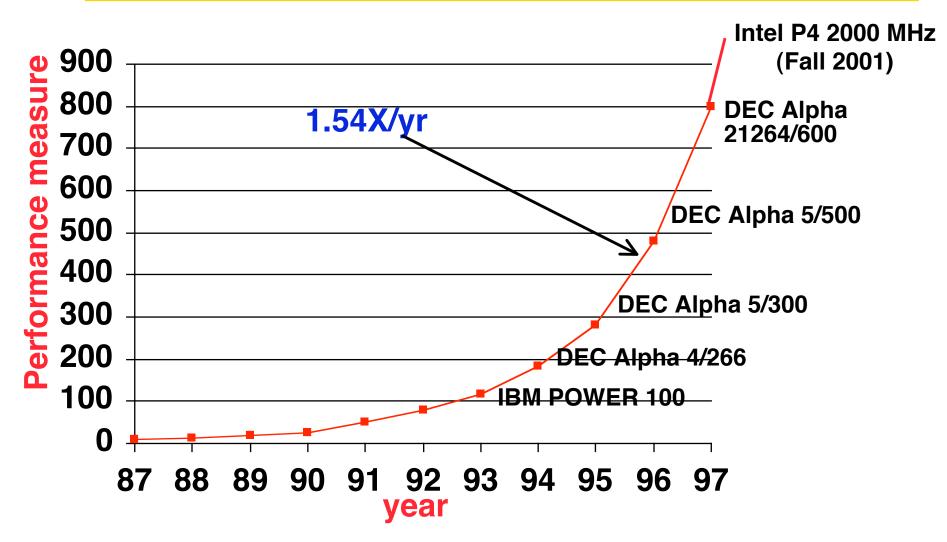
- Primarily Crystalline Silicon
- 1mm 25mm on a side
- 2006 feature size ~ 65nm = 6.5 x 10⁻⁸ m
- 100 800M transistors
- (25 100M "logic gates")
- 3 10 conductive layers
- "CMOS" (complementary metal oxide semiconductor) most common.
- Package provides:
 - spreading of chip-level signal paths to board-level
 - heat dissipation.
- Ceramic or plastic with gold wires.


Printed Circuit Boards

- fiberglass or ceramic
- 1-20 conductive layers
- 1-20in on a side
- IC packages are soldered down.



Technology Trends: Memory Capacity (Single-Chip DRAM)


- Now 1.4X/yr, or 2X every 2 years.
- 8000X since 1980! CS61C L01 Introduction + Numbers (12)

Technology Trends: Microprocessor Complexity

Technology Trends: Processor Performance

We'll talk about processor performance later on...

CS61C L01 Introduction + Numbers (14)

Computer Technology - Dramatic Change!

- Memory
 - DRAM capacity: 2x / 2 years (since '96); 64x size improvement in last decade.
- Processor
 - Speed 2x / 1.5 years (since '85);
 100X performance in last decade.
- Disk
 - Capacity: 2x / 1 year (since '97) 250X size in last decade.

Computer Technology - Dramatic Change!

We'll see that Kilo, Mega, etc. are incorrect later!

- State-of-the-art PC when you graduate: (at least...)
 - Processor clock speed: 5
 - Memory capacity:
 - Disk capacity:

- 5000 MegaHertz (5.0 GigaHertz)
- 8000 MegaBytes (8.0 GigaBytes)
- 2000 GigaBytes (2.0 TeraBytes)
- New units! Mega => Giga, Giga => Tera

(Tera => Peta, Peta => Exa, Exa => Zetta Zetta => Yotta = 10²⁴)

CS61C: So what's in it for me?

- Learn some of the big ideas in CS & engineering:
 - 5 Classic components of a Computer
 - Data can be anything (integers, floating point, characters): a program determines what it is
 - Stored program concept: instructions just data
 - Principle of Locality, exploited via a memory hierarchy (cache)
 - Greater performance by exploiting parallelism
 - Principle of abstraction, used to build systems as layers
 - Compilation v. interpretation thru system layers
 - Principles/Pitfalls of Performance Measurement

Others Skills learned in 61C

Learning C

- If you know one, you should be able to learn another programming language largely on your own
- Given that you know C++ or Java, should be easy to pick up their ancestor, C

Assembly Language Programming

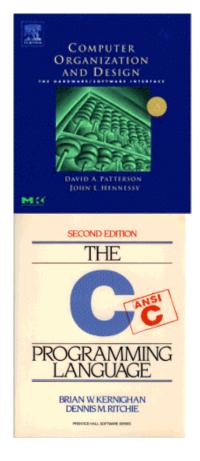
 This is a skill you will pick up, as a side effect of understanding the Big Ideas

Hardware design

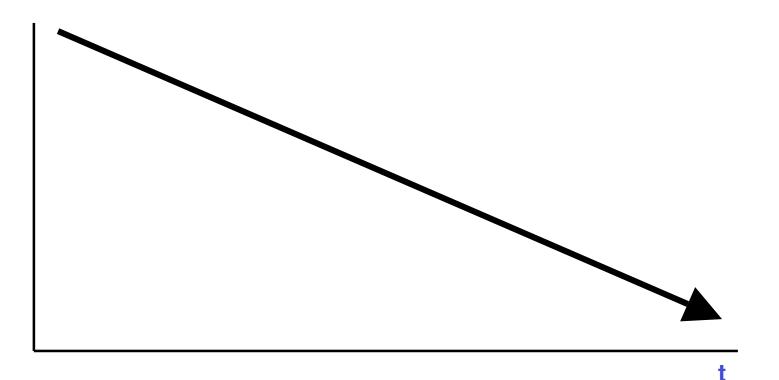
- We think of hardware at the abstract level, with only a little bit of physical logic to give things perspective
- CS 150, 152 teach this

Course Lecture Outline

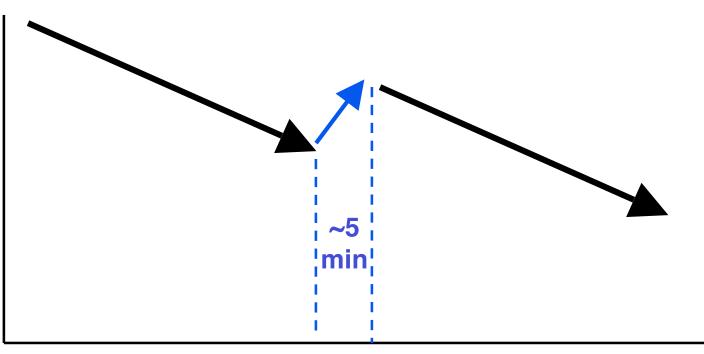
- Number representations
- C-Language (basics + pointers)
- Memory management
- Assembly Programming
- Floating Point
- make-ing an Executable
- Logic Design
- Introduction to Logisim
- CPU organization
- Pipelining
- Caches
- Virtual Memory
- I/O
- Disks, Networks
- Performance
- Advanced Topic


"Always in motion is the future..."

Our schedule may change slightly depending on some factors. This includes lectures, assignments & labs...



- Required: Computer Organization and Design: The Hardware/Software Interface, <u>Third Edition</u>, Patterson and Hennessy (COD). The second edition is far inferior, and is not suggested.
- Required: *The C Programming Language*, Kernighan and Ritchie (K&R), 2nd edition
- Reading assignments on web page



Attention over time!

t

Attention over time!

Tried-and-True Technique: Peer Instruction

- Increase real-time learning in lecture, test understanding of concepts vs. details
- As complete a "segment" ask multiple choice question
 - 1-2 minutes to decide yourself
 - 3 minutes in pairs/triples to reach consensus. Teach others!
 - 5-7 minute discussion of answers, questions, clarifications
- You don't need transmitters
 - We will be low tech this session

CS61C L01 Introduction + Numbers (24)

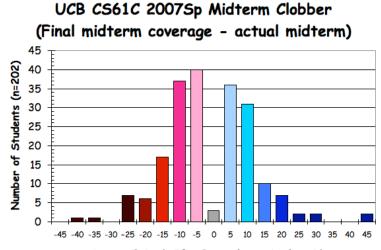
Administrivia

Getting into the class

- Will go by Bearfacts
- Attend discussion section and lab (at least first week)
- UNIX Help, Tues 5pm 271 Soda
- First Assignment is HW1 due Sunday
 - Will be posted on website (will go up later today)
- Scott is having special OH today
 12:30-2 in 329 Soda

We are having discussion, lab and office hours this week...

- Section 1 (Clark)
 - Discussion MW 2-3pm 320 Soda
 - Lab TuTh 1-3pm 271 Soda
- Section 2 (Valerie)
 - Discussion MW 3-4pm 320 Soda
 - Lab TuTh 3-5pm 271 Soda
- Office Hours
 - Clark MW 1-2pm Soda 7th floor alcove
 - Valerie Tu 5-6pm Th 10-11, location TBD


Homeworks, Labs and Projects

- Lab exercises (2 per week; due in that lab session unless extension given by TA)
- <u>Homework exercises</u> (~ 1.5 every week)
- Projects (every 2 weeks)
- All exercises, reading, homeworks, projects on course web page
- We will DROP your lowest HW, Lab!
- Never have {HW, MT, Proj} due same day

2 Course Exams

- Tentative (will be finalized this week)
- Midterm: Thursday 2007-7-19 @ 7-10pm
 - Give 3 hours for 2 hour exam
 - One "review sheet" allowed
 - Review session beforehand, time/place TBA
- Final: Thursday 2007-8-16 @ 7-10pm
 - You can *clobber* vour midterm arade!

Amount Gained. If < 0, no change in the midterm

Your final grade

• Grading (could change before 1st midterm)

- 15pts = 5% Labs
- 30pts = 10% Homework
- 60pts = 20% Projects
- 75pts = 25% Midterm* [can be clobbered by Final]
- 120pts = 40% Final
- + Extra credit for EPA. What's EPA?
- Grade distributions
 - Similar to CS61B, in the absolute scale.
 - Perfect score is 300 points. 10-20-10 for A+, A, A-
 - Similar for Bs and Cs (40 pts per letter-grade)
 - ... C+, C, C-, D, F (No D+ or D- distinction)
 - Differs: No F will be given if all-but-one {hw, lab}, all projects submitted and all exams taken

We'll "ooch" grades up but never down

Extra Credit: EPA!

- Effort
 - Attending Scott's and TA's office hours, completing all assignments, turning in HW0, doing reading quizzes
- Participation
 - Attending lecture and voting using the PRS system
 - Asking great questions in discussion and lecture and making it more interactive
- Altruism
 - Helping others in lab or on the newsgroup
- EPA! extra credit points have the potential to bump students up to the next grade level! (but actual EPA! scores are internal)

CS61C L01 Introduction + Numbers (30)

Course Problems...Cheating

- What is cheating?
 - <u>Studying</u> together in groups is <u>encouraged.</u>
 - Turned-in work must be <u>completely</u> your own.
 - Common examples of cheating: running out of time on a assignment and then pick up output, take homework from box and copy, person asks to borrow solution "just to take a look", copying an exam question, ...
 - You're not allowed to work on homework/projects/exams with <u>anyone</u> (other than ask Qs walking out of lecture)
 - Both "giver" and "receiver" are equally culpable
- Cheating points: negative points for that assignment / project / exam (e.g., if it's worth 10 pts, you get -10) In most cases, F in the course.
- <u>Every offense</u> will be referred to the Office of Student Judicial Affairs.

www.eecs.berkeley.edu/Policies/acad.dis.shtml

CS61C L01 Introduction + Numbers (31)

- Cesar Chavez Center (on Lower Sproul)
- The SLC will offer directed study groups for students CS61C.
- They will also offer Drop-in tutoring support for about 20 hours each week.
- Most of these hours will be conducted by paid tutorial staff, but these will also be supplemented by students who are receiving academic credit for tutoring.

Decimal Numbers: Base 10

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Example:

3271 =

$(3x10^3) + (2x10^2) + (7x10^1) + (1x10^0)$

Numbers: positional notation

- Number Base $B \Rightarrow B$ symbols per digit:
 - Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Base 2 (Binary): 0, 1
- Number representation:
 - $d_{31}d_{30} \dots d_1d_0$ is a 32 digit number
 - value = $d_{31} \times B^{31} + d_{30} \times B^{30} + ... + d_1 \times B^1 + d_0 \times B^0$
- Binary: 0,1 (In binary digits called "bits") • 0b11010 = $1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$ = 16 + 8 + 2 #s often written = 26
- **0b...** Here 5 digit binary # turns into a 2 digit decimal #
 - Can we find a base that converts to binary easily?

Hexadecimal Numbers: Base 16

- Hexadecimal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 - Normal digits + 6 more from the alphabet
 - In C, written as 0x... (e.g., 0xFAB5)
- Conversion: Binary Hex
 - 1 hex digit represents 16 decimal values
 - 4 binary digits represent 16 decimal values
 - \Rightarrow 1 hex digit replaces 4 binary digits
- One hex digit is a "nibble". Two is a "byte"
- Example:

Decimal vs. Hexadecimal vs. Binary

Examples:
1010 1100 0011 (binary) = 0xAC3
10111 (binary) = 0001 0111 (binary) = 0x17
0x3F9 = 11 1111 1001 (binary)
How do we convert between hex and Decimal?

U

1

MEMORIZE!

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta

physics.nist.gov/cuu/Units/binary.html Common use prefixes (all SI, except K [= k in SI])

Name	Abbr	Factor	SI size
Kilo	К	2 ¹⁰ = 1,024	$10^3 = 1,000$
Mega	М	2 ²⁰ = 1,048,576	$10^6 = 1,000,000$
Giga	G	2 ³⁰ = 1,073,741,824	$10^9 = 1,000,000,000$
Tera	Т	2 ⁴⁰ = 1,099,511,627,776	10 ¹² = 1,000,000,000,000
Peta	Р	2 ⁵⁰ = 1,125,899,906,842,624	10 ¹⁵ = 1,000,000,000,000,000
Exa	E	2 ⁶⁰ = 1,152,921,504,606,846,976	10 ¹⁸ = 1,000,000,000,000,000,000
Zetta	Z	2 ⁷⁰ = 1,180,591,620,717,411,303,424	$10^{21} = 1,000,000,000,000,000,000,000$
Yotta	Y	2 ⁸⁰ = 1,208,925,819,614,629,174,706,176	$10^{24} = 1,000,000,000,000,000,000,000,000$

- Confusing! Common usage of "kilobyte" means 1024 bytes, but the "correct" SI value is 1000 bytes
- Hard Disk manufacturers & Telecommunications are the only computing groups that use SI factors, so what is advertised as a 30 GB drive will actually only hold about 28 x 2³⁰ bytes, and a 1 Mbit/s connection transfers 10⁶ bps. S61C L01 Introduction + Numbers (37)

kibi, mebi, gibi, tebi, pebi, exbi, zebi, yobi

en.wikipedia.org/wiki/Binary_prefix

• New IEC Standard Prefixes [only to exbi officially]

Name	Abbr	Factor
kibi	Ki	2 ¹⁰ = 1,024
mebi	Mi	2 ²⁰ = 1,048,576
gibi	Gi	2 ³⁰ = 1,073,741,824
tebi	Ti	2 ⁴⁰ = 1,099,511,627,776
pebi	Pi	2 ⁵⁰ = 1,125,899,906,842,624
exbi	Ei	2 ⁶⁰ = 1,152,921,504,606,846,976
zebi	Zi	2 ⁷⁰ = 1,180,591,620,717,411,303,424
yobi	Yi	2 ⁸⁰ = 1,208,925,819,614,629,174,706,176

As of this writing, this proposal has yet to gain widespread use...

- International Electrotechnical Commission (IEC) in 1999 introduced these to specify binary quantities.
 - Names come from shortened versions of the original SI prefixes (same pronunciation) and *bi* is short for "binary", but pronounced "bee" :-(

 Now SI prefixes only have their base-10 meaning and never have a base-2 meaning.

The way to remember #s

- What is 2^{34} ? How many bits addresses (I.e., what's ceil $log_2 = lg of$) 2.5 TiB?
- Answer! 2^{XY} means...

 $X=0 \implies \cdots$ $Y=0 \Rightarrow 1$ $X=1 \Rightarrow kibi \sim 10^3 Y=1 \Rightarrow 2$ $X=2 \implies mebi \sim 10^6 Y=2 \implies 4$ $X=3 \Rightarrow$ gibi ~10⁹ $Y=3 \Rightarrow 8$ $X=4 \Rightarrow tebi \sim 10^{12} Y=4 \Rightarrow 16$ $X=5 \implies tebi \sim 10^{15} Y=5 \implies 32$ $X=6 \implies exbi \sim 10^{18} Y=6 \implies 64$ $X=7 \implies zebi \sim 10^{21} Y=7 \implies 128$ $X=8 \Rightarrow$ vobi ~10²⁴ $Y=8 \Rightarrow$ 256 $Y=9 \implies 512$ MORI7I

CS61C L01 Introduction + Numbers (39)

A few mnemonics

- Kirby Messed Gigglypuff Terribly, (then) Perfectly Exterminated Zelda and Yoshi[CB]
- Kissing mediocre girls teaches people (to) expect zero (from) you [MT]
- Try to think of your own
 - It's a great way to learn the material
 - Email me your own, and the best few will get EPA

Summary

Continued rapid improvement in computing

- 2X every 2.0 years in memory size; every 1.5 years in processor speed; every 1.0 year in disk capacity;
- Moore's Law enables processor (2X transistors/chip ~1.5 yrs)
- 5 classic components of all computers

Control Datapath Memory Input Output

Decimal for human calculations, binary for computers, hex to write binary more easily

CS61C L01 Introduction + Numbers (41)