
inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures

Lecture #2 – Number Rep & Intro to C

2007-06-26

Scott Beamer

Instructor

Google goes
Green!!

sfgate.com

Review

- Continued rapid improvement in computing
 - 2X every 2.0 years in memory size; every 1.5 years in processor speed; every 1.0 year in disk capacity;
 - Moore's Law enables processor (2X transistors/chip ~1.5 yrs)
- 5 classic components of all computers
 Control Datapath Memory Input Output

Decimal for human calculations, binary for computers, hex to write binary more easily

Putting it all in perspective...

"If the automobile had followed the same development cycle as the computer,

- Robert X. Cringely

What to do with representations of numbers?

- Just what we do with numbers!
 - Add them
 - Subtract them
 - Multiply them
 - Divide them
 - Compare them
- Example: 10 + 7 = 17

- 1 1
- 1 0 1
- + 0 1 1 1
 - _____
- 1 0 0 0 1
- ...so simple to add in binary that we can build circuits to do it!
- subtraction just as you would in decimal
- Comparison: How do you tell if X > Y ?

Which base do we use?

- Decimal: great for humans, especially when doing arithmetic
- Hex: if human looking at long strings of binary numbers, its much easier to convert to hex and look 4 bits/symbol
 - Terrible for arithmetic on paper
- Binary: what computers use;
 you will learn how computers do +, -, *, /
 - To a computer, numbers always binary
 - Regardless of how number is written:
 - $\cdot 32_{\text{ten}} == 32_{10} == 0 \times 20 == 100000_2 == 0 \text{b} 100000$
 - Use subscripts "ten", "hex", "two" in book, slides when might be confusing

BIG IDEA: Bits can represent anything!!

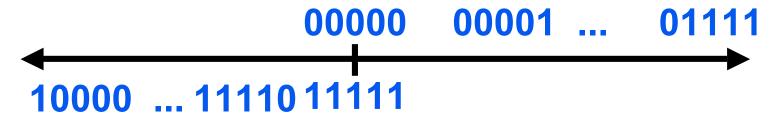
- Characters?
 - 26 letters \Rightarrow 5 bits (2⁵ = 32)
 - upper/lower case + punctuation
 ⇒ 7 bits (in 8) ("ASCII")
 - standard code to cover all the world's languages ⇒ 8,16,32 bits ("Unicode")
 www.unicode.com

- Logical values?
 - \cdot 0 ⇒ False, 1 ⇒ True
- colors ? Ex: Red (00) Green (01) Blue (11)
- locations / addresses? commands?
- MEMORIZE: N bits ⇔ at most 2^N things

How to Represent Negative Numbers?

- So far, unsigned numbers
- Obvious solution: define leftmost bit to be sign!
 - $\cdot 0 \Rightarrow +, 1 \Rightarrow -$
 - Rest of bits can be numerical value of number
- Representation called <u>sign and magnitude</u>
- MIPS uses 32-bit integers. +1_{ten} would be:
 - **0**000 0000 0000 0000 0000 0000 0001
- ◆ And −1_{ten} in sign and magnitude would be:
 - **1**000 0000 0000 0000 0000 0000 0001

Shortcomings of sign and magnitude?


- Arithmetic circuit complicated
 - Special steps depending whether signs are the same or not
- Also, two zeros
 - $0x00000000 = +0_{ten}$
 - $0x80000000 = -0_{ten}$
 - What would two 0s mean for programming?

Therefore sign and magnitude abandoned

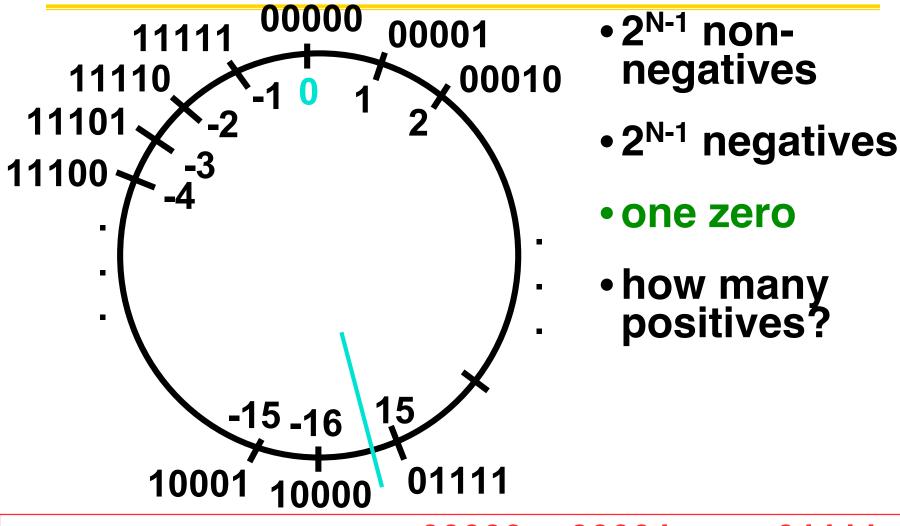
Another try: complement the bits

- Example: $7_{10} = 00111_2 7_{10} = 11000_2$
- Called <u>One's Complement</u>
- Note: positive numbers have leading 0s, negative numbers have leadings 1s.

- What is -00000 ? Answer: 11111
- How many positive numbers in N bits?

Shortcomings of One's complement?

- Arithmetic still a somewhat complicated.
- Still two zeros
 - $0 \times 000000000 = +0_{ten}$
- Although used for awhile on some computer products, one's complement was eventually abandoned because another solution was better.



Standard Negative Number Representation

- What is result for unsigned numbers if tried to subtract large number from a small one?
 - Would try to borrow from string of leading 0s, so result would have a string of leading 1s
 - $-3-4 \Rightarrow 00...0011-00...0100 = 11...1111$
 - With no obvious better alternative, pick representation that made the hardware simple
 - As with sign and magnitude, leading 0s ⇒ positive, leading 1s ⇒ negative
 - 000000...xxx is ≥ 0 , 1111111...xxx is < 0
 - except 1...1111 is -1, not -0 (as in sign & mag.)
- This representation is <u>Two's Complement</u>

2's Complement Number "line": N = 5

00000 00001 ... 01111 10000 ... 1111011111

Two's Complement for N=32

```
0000_{two} =
0000 ... 0000
                       0000
                                  0000
                                  0000
0000 ... 0000
                       0000
0000 ... 0000
                       0000
                                                                               2,147,483,645<sub>ten</sub>
2,147,483,646<sub>ten</sub>
                                                                               2,147,483,647<sub>ten</sub>
                                                                             -2,147,483,648<sub>ten</sub>
-2,147,483,647<sub>ten</sub>
                                            0001<sub>two</sub>
                                                                             -2,147,483,646_{\text{ten}}
                                            0010_{\text{two}} =
                        UUUU
                                  UUUU
```

- One zero; 1st bit called sign bit
- 1 "extra" negative:no positive 2,147,483,648_{ten}

Two's Complement Formula

 Can represent positive and negative numbers in terms of the bit value times a power of 2:

$$d_{31} \times (-(2^{31})) + d_{30} \times 2^{30} + ... + d_2 \times 2^2 + d_1 \times 2^1 + d_0 \times 2^0$$

• Example: 1101_{two}

$$= 1x-(2^3) + 1x2^2 + 0x2^1 + 1x2^0$$

$$= -2^3 + 2^2 + 0 + 2^0$$

$$= -8 + 4 + 0 + 1$$

$$= -8 + 5$$

$$=$$
 - 3_{ten}

Two's Complement shortcut: Negation

*Check out www.cs.berkeley.edu/~dsw/twos_complement.html

- Change every 0 to 1 and 1 to 0 (invert or complement), then add 1 to the result
- Proof*: Sum of number and its (one's) complement must be 111...111_{two}

```
However, 111...111_{two} = -1_{ten}
```

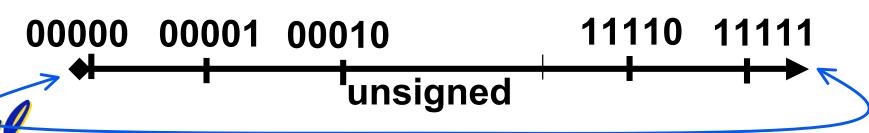
Let $x' \Rightarrow$ one's complement representation of x

Then
$$x + x' = -1 \Rightarrow x + x' + 1 = 0 \Rightarrow x' + 1 = -x$$

• Example: -3 to +3 to -3

You should be able to do this in your head...

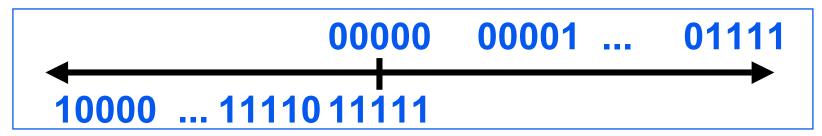
Two's comp. shortcut: Sign extension


- Convert 2's complement number rep. using n bits to more than n bits
- Simply replicate the most significant bit (sign bit) of smaller to fill new bits
 - ·2's comp. positive number has infinite 0s
 - 2's comp. negative number has infinite 1s
 - Binary representation hides leading bits;
 sign extension restores some of them
 - •16-bit -4_{ten} to 32-bit:

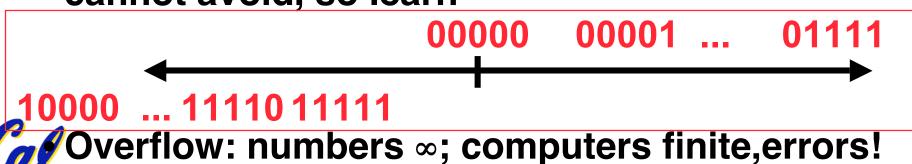
1111 1111 1111 1100_{two}

What if too big?

- Binary bit patterns above are simply representatives of numbers. Strictly speaking they are called "numerals".
- Numbers really have an ∞ number of digits
 - with almost all being same (00...0 or 11...1) except for a few of the rightmost digits
 - Just don't normally show leading digits
- If result of add (or -, *, /) cannot be represented by these rightmost HW bits, overflow is said to have occurred.


Preview: Signed vs. Unsigned Variables

- Java and C declare integers int
 - Use two's complement (signed integer)
- Also, C declaration unsigned int
 - Declares a unsigned integer
 - Treats 32-bit number as unsigned integer, so most significant bit is part of the number, not a sign bit



Number summary...

- We represent "things" in computers as particular bit patterns: N bits \Rightarrow 2^N
- Decimal for human calculations, binary for computers, hex to write binary more easily
- 1's complement mostly abandoned

 2's complement universal in computing: cannot avoid, so learn

Peer Instruction Question

 $Y = 0011 \ 1011 \ 1001 \ 1010 \ 1000 \ 1010 \ 0000 \ 0000_{two}$

- A. X > Y (if signed)
- B. X > Y (if unsigned)

AB

1: FF

2: FT

3: TF

4: TT

Administrivia

- Enrollment Issues http://summer.berkeley.edu/
- Lab Today
 - We'll ask you to sign a document saying you understand the cheating policy (from Lec #1) and agree to abide by it.
- HW
 - HW1 due Sunday @ 23:59 PST
 - HW2 due following Wed @ 23:59 PST
- Reading
 - K&R Chapters 1-5 (lots, get started now!);
- Get cardkeys from CS main office Soda Hall 3rd fl
 - Soda locks doors @ 6:30pm & on weekends
- UNIX Helpsession, Today @ 5pm in 271 Soda

Introduction to C

SECOND EDITION

THE

BRIAN W. KERNIGHAN DENNIS M. RITCHIE

PRENTICE HALL SOFTWARE SERIES

Disclaimer

- Important: You will not learn how to fully code in C in these lectures! You'll still need your C reference for this course.
 - K&R is a great reference.
 - But... check online for more sources.
 - "JAVA in a Nutshell" O'Reilly.
 - Chapter 2, "How Java Differs from C".

Compilation: Overview

C <u>compilers</u> take C and convert it into an architecture specific machine code (string of 1s and 0s).

- Unlike Java which converts to architecture independent bytecode.
- Unlike most Scheme environments which interpret the code.
- Generally a 2 part process of compiling .c files to .o files, then linking the .o files into executables

Compilation: Advantages

- Great run-time performance: generally much faster than Scheme or Java for comparable code (because it optimizes for a given architecture)
- OK compilation time: enhancements in compilation procedure (Makefiles) allow only modified files to be recompiled

Compilation: Disadvantages

- All compiled files (including the executable) are architecture specific, depending on both the CPU type and the operating system.
- Executable must be rebuilt on each new system.
 - Called "porting your code" to a new architecture.
- The "change→compile→run [repeat]" iteration cycle is slow

C vs. Java™ Overview (1/2)

Java

- Object-oriented (OOP)
- · "Methods"
- Class libraries of data structures
- Automatic memory management

C

- No built-in object abstraction. Data separate from methods.
- "Functions"
- C libraries are lower-level
- Manual memory management
- Pointers

C vs. Java™ Overview (2/2)

Java

- High memory overhead from class libraries
- Relatively Slow
- Arrays initialize to zero
- Syntax:

```
/* comment */
// comment
System.out.print
```

C

- Low memory overhead
- Relatively Fast
- Arrays initialize to garbage
- Syntax:
 /* comment */
 printf

C Syntax: Variable Declarations

- Very similar to Java, but with a few minor but important differences
- All variable declarations must go before they are used (at the beginning of the block).
- A variable may be initialized in its declaration.
- Examples of declarations:
 - correct: {

int
$$a = 0$$
, $b = 10$;

• • •

•incorrect: for (int i = 0; i < 10; i++)

C Syntax: True or False?

- What evaluates to FALSE in C?
 - 0 (integer)
 - NULL (pointer: more on this later)
 - no such thing as a Boolean
- What evaluates to TRUE in C?
 - everything else...
 - (same idea as in scheme: only #f is false, everything else is true!)

C syntax : flow control

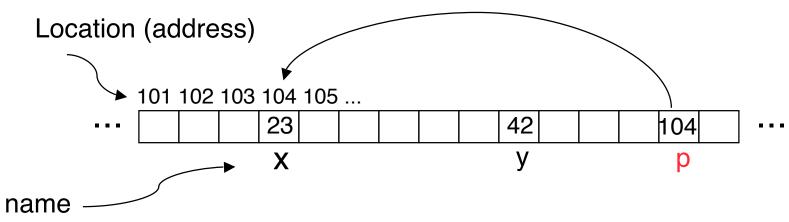
- Within a function, remarkably close to Java constructs in methods (shows its legacy) in terms of flow control
 - if-else
 - •switch
 - while and for
 - do-while

C Syntax: main

 To get the main function to accept arguments, use this:

```
int main (int argc, char *argv[])
```

- What does this mean?
 - argc will contain the number of strings on the command line (the executable counts as one, plus one for each argument).
 - Example: unix% sort myFile
 - argv is a pointer to an array containing the arguments as strings (more on pointers later).


Address vs. Value

- Consider memory to be a single huge array:
 - Each cell of the array has an address associated with it.
 - Each cell also stores some value
 - Do you think they use signed or unsigned numbers? Negative address?!
- Don't confuse the address referring to a memory location with the value stored in that location.

101 102 103 104 105 ... 23 42 42

- An address refers to a particular memory location. In other words, it points to a memory location.
- Pointer: A variable that contains the address of another variable.

How to create a pointer:

& operator: get address of a variable

Note the "*" gets used 2 different ways in this example. In the declaration to indicate that **p** is going to be a pointer, and in the **printf** to get the value pointed to by **p**.

- How get a value pointed to?
 - * "dereference operator": get value pointed to

printf("p points to %d\n",*p);

- How to change a variable pointed to?
 - Use dereference * operator on left of =

$$*p = 5; p x 5$$

Pointers and Parameter Passing

- Java and C pass a parameter "by value"
 - procedure/function gets a copy of the parameter, so changing the copy cannot change the original

```
void addOne (int x) {
    x = x + 1;
}
int y = 3;
addOne(y);
```

•y is still = 3

Pointers and Parameter Passing

How to get a function to change a value?

```
void addOne (int *p) {
   *p = *p + 1;
}
int y = 3;

addOne(&y);

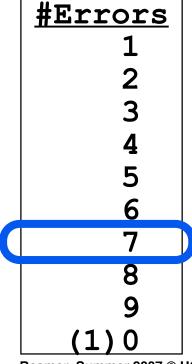
•y is now = 4
```


- Normally a pointer can only point to one type (int, char, a struct, etc.).
 - void * is a type that can point to anything (generic pointer)
 - Use sparingly to help avoid program bugs... and security issues... and a lot of other bad things!

Peer Instruction Question

```
void main(); {
  int *p, x=5, y; // init
  y = *(p = &x) + 10;
  int z;
  flip-sign(p);
  printf("x=%d,y=%d,p=%d\n",x,y,p);
}
flip-sign(int *n) {*n = -(*n)}
```

How many errors?


Beamer, Summer 2007 © UCB

Peer Instruction Answer

```
void main(); {
  int *p, x=5, y; // init
  y = *(p = &x) + 10;
  int z;
  flip-sign(p);
  printf("x=%d,y=%d,p=%d\n",x,y,*p);
}
flip-sign(int *n) {*n = -(*n);}
```

How many errors? I get 7.

Beamer, Summer 2007 © UCB

And in conclusion...

- All declarations go at the beginning of each function.
- Only 0 and NULL evaluate to FALSE.
- All data is in memory. Each memory location has an address to use to refer to it and a value stored in it.
- A pointer is a C version of the address.
 - * "follows" a pointer to its value
 - & gets the address of a value

