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Review

•All declarations go at the beginning of
each function.
•Only 0 and NULL evaluate to FALSE.
•All data is in memory.  Each memory
location has an address to use to refer
to it and a value stored in it.
•A pointer is a C version of the
address.

• * “follows” a pointer to its value
• & gets the address of a value
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Has there been an update to ANSI C?

•Yes! It’s called the “C99” or “C9x” std
• Thanks to Jason Spence for the tip

•References
http://en.wikipedia.org/wiki/Standard_C_library
http://home.tiscalinet.ch/t_wolf/tw/c/c9x_changes.html

•Highlights
•<inttypes.h>: convert integer types (#38)
•<stdbool.h> for boolean logic def’s (#35)
•restrict keyword for optimizations (#30)
• Named initializers (#17) for aggregate objs
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Pointers & Allocation (1/2)

•After declaring a pointer:
int *ptr;

ptr doesn’t actually point to anything
yet.  We can either:

• make it point to something that already
exists, or

• allocate room in memory for something
new that it will point to… (later)
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Pointers & Allocation (2/2)

•Pointing to something that already
exists:
int *ptr, var1, var2;
var1 = 5;
ptr  = &var1;
var2 = *ptr;

•var1 and var2 have room implicitly
allocated for them.

ptr var1 ? var2 ?5 5? 
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More C Pointer Dangers

•Declaring a pointer just allocates
space to hold the pointer – it does not
allocate something to be pointed to!
•Local variables in C are not initialized,
they may contain anything.
•What does the following code do?

void f()
{
    int *ptr;
    *ptr = 5;
}
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Arrays (1/6)

•Declaration:
int ar[2];

declares a 2-element integer array.
  int ar[] = {795, 635};
declares and fills a 2-elt integer array.
•Accessing elements:

ar[num];

returns the numth element.
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Arrays (2/6)

•Arrays are (almost) identical to
pointers
•char *string and char string[] are
nearly identical declarations

• They differ in very subtle ways:
incrementing, declaration of filled arrays

•Key Concept: An array variable is a
“pointer” to the first element.
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Arrays (3/6)
•Consequences:

•ar is an array variable but looks like a
pointer in many respects (though not all)
•ar[0] is the same as *ar
•ar[2] is the same as *(ar+2)
• We can use pointer arithmetic to access
arrays more conveniently.

•Declared arrays are only allocated
while the scope is valid

char *foo() {
   char string[32]; ...;
   return string;
} is incorrect
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Arrays (4/6)

•Array size n; want to access from 0 to
n-1, but test for exit by comparing to
address one element past the array
 int ar[10], *p, *q, sum = 0;
...
p = &ar[0]; q = &ar[10];
while (p != q)
 /* sum = sum + *p; p = p + 1; */

sum += *p++;
• Is this legal?

•C defines that one element past end of
array must be a valid address, i.e., not
cause an bus error or address error
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Arrays (5/6)

•Array size n; want to access from 0 to
n-1, so you should use counter AND
utilize a constant for declaration & incr

• Wrong
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

• Right
#define ARRAY_SIZE 10
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }

•Why? SINGLE SOURCE OF TRUTH
• You’re utilizing indirection and avoiding
maintaining two copies of the number 10
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Arrays (6/6)

•Pitfall: An array in C does not know its
own length, & bounds not checked!

• Consequence: We can accidentally
access off the end of an array.

• Consequence: We must pass the array
and its size to a procedure which is
going to traverse it.

•Segmentation faults and bus errors:
• These are VERY difficult to find;
be careful! (You’ll learn how to debug
these in lab…)
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Pointer Arithmetic (1/4)

•Since a pointer is just a mem address, we
can add to it to traverse an array.
•p+1 returns a ptr to the next array elt.
•*p++ vs (*p)++ ?

• x = *p++ ⇒ x = *p ; p =  p + 1;
• x = (*p)++ ⇒ x = *p ; *p = *p + 1;

•What if we have an array of large structs
(objects)?

• C takes care of it: In reality, p+1 doesn’t add
1 to the memory address, it adds the size of
the array element.
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Pointer Arithmetic (2/4)
•So what’s valid pointer arithmetic?

• Add an integer to a pointer.
• Subtract 2 pointers (in the same array).
• Compare pointers (<, <=, ==, !=, >, >=)
• Compare pointer to NULL (indicates that
the pointer points to nothing).

•Everything else is illegal since it
makes no sense:

• adding two pointers
• multiplying pointers
• subtract pointer from integer
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int get(int array[], int n)
{
    return  (array[n]);

/* OR */
    return *(array + n);
}

Pointer Arithmetic (3/4)

•C knows the size of the thing a pointer
points to – every addition or
subtraction moves that many bytes.

• 1 byte for a char, 4 bytes for an int, etc.

•So the following are equivalent:
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Pointer Arithmetic (4/4)

•We can use pointer arithmetic to
“walk” through memory:
void copy(int *from, int *to, int n) {
    int i;
    for (i=0; i<n; i++) {
        *to++ = *from++;
    }
}
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Pointers in C
•Why use pointers?

• If we want to pass a huge struct or array,
it’s easier to pass a pointer than the
whole thing.

• In general, pointers allow cleaner, more
compact code.

•So what are the drawbacks?
• Pointers are probably the single largest
source of bugs in software, so be careful
anytime you deal with them.

• Dangling reference (premature free)
• Memory leaks (tardy free)
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C Pointer Dangers
•Unlike Java, C lets you cast a value of
any type to any other type without
performing any checking.

int x = 1000;

int *p = x;         /* invalid */

int *q = (int *) x; /* valid */

•The first pointer declaration is invalid
since the types do not match.
•The second declaration is valid C but is
almost certainly wrong

• Is it ever correct?
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Segmentation Fault vs Bus Error?
• http://www.hyperdictionary.com/
• Bus Error

• A fatal failure in the execution of a machine
language instruction resulting from the
processor detecting an anomalous condition on
its bus. Such conditions include invalid address
alignment (accessing a multi-byte number at an
odd address), accessing a physical address that
does not correspond to any device, or some
other device-specific hardware error. A bus
error triggers a processor-level exception which
Unix translates into a “SIGBUS” signal which, if
not caught, will terminate the current process.

• Segmentation Fault
• An error in which a running Unix program

attempts to access memory not allocated to it
and terminates with a segmentation violation
error and usually a core dump.
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Administrivia

•Homework expectations
• Readers don’t have time to fix your
programs which have to run on lab
machines.

• Code that doesn’t compile or fails all of
the autograder tests ⇒ 0

•Labs due in lab or by first 10 minutes
of next lab
•Worried about getting into the class?

stick around…
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Administrivia

• Slip days
• You get 2 “slip days” per year to use for any

assignment (except the last one of the term)
• They are used at 1-day increments. Thus 1
minute late = 1 slip day used.

• They’re recorded automatically (by checking
submission time) so you don’t need to tell us
when you’re using them

• Once you’ve used all of your slip days, when a
project/hw is late, it’s … 0 points.

• If you submit twice, we ALWAYS grade the
latter, and deduct slip days appropriately

• You no longer need to tell anyone how your dog
ate your computer.

• You should really save for a rainy day … we all
get sick and/or have family emergencies!



CS61C L3 C Pointers (22) Beamer, Summer 2007 © UCB

C Strings

•A string in C is just an array of
characters.

char string[] = "abc";

•How do you tell how long a string is?
• Last character is followed by a 0 byte
(null terminator)
int strlen(char s[])
{
    int n = 0;
    while (s[n] != 0) n++;
    return n;
}
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Arrays vs. Pointers

•An array name is a read-only pointer
to the 0th element of the array.
•An array parameter can be declared as
an array or a pointer; an array
argument can be passed as a pointer.

int strlen(char s[])
{
    int n = 0;
    while (s[n] != 0)
        n++;
    return n;
}

int strlen(char *s)
{
    int n = 0;
    while (s[n] != 0)
        n++;
    return n;
}

Could be written:
while (s[n])
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C Strings Headaches

•One common mistake is to forget to
allocate an extra byte for the null
terminator.
•More generally, C requires the
programmer to manage memory
manually (unlike Java or C++).

• When creating a long string by
concatenating several smaller strings,
the programmer must insure there is
enough space to store the full string!

• What if you don’t know ahead of time
how big your string will be?

• Buffer overrun security holes!
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Common C Errors

•There is a difference between
assignment and equality
•a = b is assignment
•a == b is an equality test

•This is one of the most common
errors for beginning C programmers!
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Pointer Arithmetic Peer Instruction Q

How many of the following are invalid?
I. pointer + integer
II. integer + pointer
III. pointer + pointer
IV. pointer – integer
V. integer – pointer
VI. pointer – pointer
VII. compare pointer to pointer
VIII. compare pointer to integer
IX. compare pointer to 0
X. compare pointer to NULL

#invalid
   1
   2
   3
   4
   5
   6
   7
   8
   9
(1)0
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• How many of the following are invalid?
I. pointer + integer
II. integer + pointer
III. pointer + pointer
IV. pointer – integer
V. integer – pointer
VI. pointer – pointer
VII. compare pointer to pointer
VIII. compare pointer to integer
IX. compare pointer to 0
X. compare pointer to NULL

Pointer Arithmetic Peer Instruction Ans

ptr + 1
1 + ptr

ptr + ptr
ptr - 1
1 - ptr

ptr - ptr
ptr1 == ptr2

ptr == 1
ptr == NULL
ptr == NULL

#invalid
   1
   2
   3
   4
   5
   6
   7
   8
   9
(1)0
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Pointer Arithmetic Summary
• x = *(p+1) ?

⇒ x = *(p+1) ;
• x = *p+1 ?

⇒ x = (*p) + 1 ;
• x = (*p)++ ?

⇒ x = *p ; *p = *p + 1;
• x = *p++ ? (*p++) ? *(p)++ ? *(p++) ?

⇒ x = *p ; p =  p + 1;
• x = *++p ?

⇒ p = p + 1 ;  x = *p ;

•  Lesson?
• Using anything but the standard *p++ , (*p)++

causes more problems than it solves!
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C String Standard Functions

• int strlen(char *string);
• compute the length of string

• int strcmp(char *str1, char *str2);
• return 0 if str1 and str2 are identical (how is

this different from str1 == str2?)

• char *strcpy(char *dst, char *src);
• copy the contents of string src to the memory

at dst.  The caller must ensure that dst has
enough memory to hold the data to be copied.
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Pointers to pointers (1/4)

•Sometimes you want to have a
procedure increment a variable?
•What gets printed?

void AddOne(int  x)
{     x =  x + 1;   }

int y = 5;
AddOne( y);
printf(“y = %d\n”, y);

y = 5

…review…
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Pointers to pointers (2/4)

•Solved by passing in a pointer to our
subroutine.
•Now what gets printed?

void AddOne(int *p)
{    *p = *p + 1;   }

int y = 5;
AddOne(&y);
printf(“y = %d\n”, y);

y = 6

…review…
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Pointers to pointers (3/4)

•But what if what you want changed is
a pointer?
•What gets printed?

void IncrementPtr(int  *p)
{    p =  p + 1;   }

int A[3] = {50, 60, 70};
int *q = A;
IncrementPtr( q);
printf(“*q = %d\n”, *q);

*q = 50

50 60 70

A q
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Pointers to pointers (4/4)

•Solution! Pass a pointer to a pointer,
called a handle, declared as **h
•Now what gets printed?

void IncrementPtr(int **h)
{   *h = *h + 1;   }

int A[3] = {50, 60, 70};
int *q = A;
IncrementPtr(&q);
printf(“*q = %d\n”, *q);

*q = 60

50 60 70

A q q
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Dynamic Memory Allocation (1/3)
•C has operator sizeof() which gives
size in bytes (of type or variable)
•Assume size of objects can be
misleading & is bad style, so use
sizeof(type)

• Many years ago an int was 16 bits, and
programs assumed it was 2 bytes
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Dynamic Memory Allocation (2/3)

•To allocate room for something new to
point to, use malloc() (with the help of a
typecast and sizeof):
ptr = (int *) malloc (sizeof(int));

• Now, ptr points to a space somewhere in
memory of size (sizeof(int)) in bytes.
•(int *) simply tells the compiler what will
go into that space (called a typecast).

•malloc is almost never used for 1 var
ptr = (int *) malloc (n*sizeof(int));

• This allocates an array of n integers.
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Dynamic Memory Allocation (3/3)

•Once malloc() is called, the memory
location contains garbage, so don’t
use it until you’ve set its value.
•After dynamically allocating space, we
must dynamically free it:
free(ptr);

•Use this command to clean up.
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Binky Pointer Video (thanks to NP @ SU)
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“And in Conclusion…”
•C99 is the update to the language
•Pointers and arrays are virtually same
•C knows how to increment pointers
•C is an efficient language, with little
protection

• Array bounds not checked
• Variables not automatically initialized

• (Beware) The cost of efficiency is
more overhead for the programmer.

• “C gives you a lot of extra rope but be
careful not to hang yourself with it!”

•Use handles to change pointers


