
CS61C L3 C Pointers (1) Beamer, Summer 2007 © UCB

Scott Beamer, Instructor

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture #3 – C Strings, Arrays, & Malloc

2007-06-27

Sun announces new supercomputer:
Sun Constellation

CS61C L3 C Pointers (2) Beamer, Summer 2007 © UCB

Review

•All declarations go at the beginning of
each function.
•Only 0 and NULL evaluate to FALSE.
•All data is in memory. Each memory
location has an address to use to refer
to it and a value stored in it.
•A pointer is a C version of the
address.

• * “follows” a pointer to its value
• & gets the address of a value

CS61C L3 C Pointers (3) Beamer, Summer 2007 © UCB

Has there been an update to ANSI C?

•Yes! It’s called the “C99” or “C9x” std
• Thanks to Jason Spence for the tip

•References
http://en.wikipedia.org/wiki/Standard_C_library
http://home.tiscalinet.ch/t_wolf/tw/c/c9x_changes.html

•Highlights
•<inttypes.h>: convert integer types (#38)
•<stdbool.h> for boolean logic def’s (#35)
•restrict keyword for optimizations (#30)
• Named initializers (#17) for aggregate objs

CS61C L3 C Pointers (4) Beamer, Summer 2007 © UCB

Pointers & Allocation (1/2)

•After declaring a pointer:
int *ptr;

ptr doesn’t actually point to anything
yet. We can either:

• make it point to something that already
exists, or

• allocate room in memory for something
new that it will point to… (later)

CS61C L3 C Pointers (5) Beamer, Summer 2007 © UCB

Pointers & Allocation (2/2)

•Pointing to something that already
exists:
int *ptr, var1, var2;
var1 = 5;
ptr = &var1;
var2 = *ptr;

•var1 and var2 have room implicitly
allocated for them.

ptr var1 ? var2 ?5 5?

CS61C L3 C Pointers (6) Beamer, Summer 2007 © UCB

More C Pointer Dangers

•Declaring a pointer just allocates
space to hold the pointer – it does not
allocate something to be pointed to!
•Local variables in C are not initialized,
they may contain anything.
•What does the following code do?

void f()
{
 int *ptr;
 *ptr = 5;
}

CS61C L3 C Pointers (7) Beamer, Summer 2007 © UCB

Arrays (1/6)

•Declaration:
int ar[2];

declares a 2-element integer array.
 int ar[] = {795, 635};
declares and fills a 2-elt integer array.
•Accessing elements:

ar[num];

returns the numth element.

CS61C L3 C Pointers (8) Beamer, Summer 2007 © UCB

Arrays (2/6)

•Arrays are (almost) identical to
pointers
•char *string and char string[] are
nearly identical declarations

• They differ in very subtle ways:
incrementing, declaration of filled arrays

•Key Concept: An array variable is a
“pointer” to the first element.

CS61C L3 C Pointers (9) Beamer, Summer 2007 © UCB

Arrays (3/6)
•Consequences:

•ar is an array variable but looks like a
pointer in many respects (though not all)
•ar[0] is the same as *ar
•ar[2] is the same as *(ar+2)
• We can use pointer arithmetic to access
arrays more conveniently.

•Declared arrays are only allocated
while the scope is valid

char *foo() {
 char string[32]; ...;
 return string;
} is incorrect

CS61C L3 C Pointers (10) Beamer, Summer 2007 © UCB

Arrays (4/6)

•Array size n; want to access from 0 to
n-1, but test for exit by comparing to
address one element past the array
 int ar[10], *p, *q, sum = 0;
...
p = &ar[0]; q = &ar[10];
while (p != q)
 /* sum = sum + *p; p = p + 1; */

sum += *p++;
• Is this legal?

•C defines that one element past end of
array must be a valid address, i.e., not
cause an bus error or address error

CS61C L3 C Pointers (11) Beamer, Summer 2007 © UCB

Arrays (5/6)

•Array size n; want to access from 0 to
n-1, so you should use counter AND
utilize a constant for declaration & incr

• Wrong
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

• Right
#define ARRAY_SIZE 10
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }

•Why? SINGLE SOURCE OF TRUTH
• You’re utilizing indirection and avoiding
maintaining two copies of the number 10

CS61C L3 C Pointers (12) Beamer, Summer 2007 © UCB

Arrays (6/6)

•Pitfall: An array in C does not know its
own length, & bounds not checked!

• Consequence: We can accidentally
access off the end of an array.

• Consequence: We must pass the array
and its size to a procedure which is
going to traverse it.

•Segmentation faults and bus errors:
• These are VERY difficult to find;
be careful! (You’ll learn how to debug
these in lab…)

CS61C L3 C Pointers (13) Beamer, Summer 2007 © UCB

Pointer Arithmetic (1/4)

•Since a pointer is just a mem address, we
can add to it to traverse an array.
•p+1 returns a ptr to the next array elt.
•*p++ vs (*p)++ ?

• x = *p++ ⇒ x = *p ; p = p + 1;
• x = (*p)++ ⇒ x = *p ; *p = *p + 1;

•What if we have an array of large structs
(objects)?

• C takes care of it: In reality, p+1 doesn’t add
1 to the memory address, it adds the size of
the array element.

CS61C L3 C Pointers (14) Beamer, Summer 2007 © UCB

Pointer Arithmetic (2/4)
•So what’s valid pointer arithmetic?

• Add an integer to a pointer.
• Subtract 2 pointers (in the same array).
• Compare pointers (<, <=, ==, !=, >, >=)
• Compare pointer to NULL (indicates that
the pointer points to nothing).

•Everything else is illegal since it
makes no sense:

• adding two pointers
• multiplying pointers
• subtract pointer from integer

CS61C L3 C Pointers (15) Beamer, Summer 2007 © UCB

int get(int array[], int n)
{
 return (array[n]);

/* OR */
 return *(array + n);
}

Pointer Arithmetic (3/4)

•C knows the size of the thing a pointer
points to – every addition or
subtraction moves that many bytes.

• 1 byte for a char, 4 bytes for an int, etc.

•So the following are equivalent:

CS61C L3 C Pointers (16) Beamer, Summer 2007 © UCB

Pointer Arithmetic (4/4)

•We can use pointer arithmetic to
“walk” through memory:
void copy(int *from, int *to, int n) {
 int i;
 for (i=0; i<n; i++) {
 *to++ = *from++;
 }
}

CS61C L3 C Pointers (17) Beamer, Summer 2007 © UCB

Pointers in C
•Why use pointers?

• If we want to pass a huge struct or array,
it’s easier to pass a pointer than the
whole thing.

• In general, pointers allow cleaner, more
compact code.

•So what are the drawbacks?
• Pointers are probably the single largest
source of bugs in software, so be careful
anytime you deal with them.

• Dangling reference (premature free)
• Memory leaks (tardy free)

CS61C L3 C Pointers (18) Beamer, Summer 2007 © UCB

C Pointer Dangers
•Unlike Java, C lets you cast a value of
any type to any other type without
performing any checking.

int x = 1000;

int *p = x; /* invalid */

int *q = (int *) x; /* valid */

•The first pointer declaration is invalid
since the types do not match.
•The second declaration is valid C but is
almost certainly wrong

• Is it ever correct?

CS61C L3 C Pointers (19) Beamer, Summer 2007 © UCB

Segmentation Fault vs Bus Error?
• http://www.hyperdictionary.com/
• Bus Error

• A fatal failure in the execution of a machine
language instruction resulting from the
processor detecting an anomalous condition on
its bus. Such conditions include invalid address
alignment (accessing a multi-byte number at an
odd address), accessing a physical address that
does not correspond to any device, or some
other device-specific hardware error. A bus
error triggers a processor-level exception which
Unix translates into a “SIGBUS” signal which, if
not caught, will terminate the current process.

• Segmentation Fault
• An error in which a running Unix program

attempts to access memory not allocated to it
and terminates with a segmentation violation
error and usually a core dump.

CS61C L3 C Pointers (20) Beamer, Summer 2007 © UCB

Administrivia

•Homework expectations
• Readers don’t have time to fix your
programs which have to run on lab
machines.

• Code that doesn’t compile or fails all of
the autograder tests ⇒ 0

•Labs due in lab or by first 10 minutes
of next lab
•Worried about getting into the class?

stick around…

CS61C L3 C Pointers (21) Beamer, Summer 2007 © UCB

Administrivia

• Slip days
• You get 2 “slip days” per year to use for any

assignment (except the last one of the term)
• They are used at 1-day increments. Thus 1
minute late = 1 slip day used.

• They’re recorded automatically (by checking
submission time) so you don’t need to tell us
when you’re using them

• Once you’ve used all of your slip days, when a
project/hw is late, it’s … 0 points.

• If you submit twice, we ALWAYS grade the
latter, and deduct slip days appropriately

• You no longer need to tell anyone how your dog
ate your computer.

• You should really save for a rainy day … we all
get sick and/or have family emergencies!

CS61C L3 C Pointers (22) Beamer, Summer 2007 © UCB

C Strings

•A string in C is just an array of
characters.

char string[] = "abc";

•How do you tell how long a string is?
• Last character is followed by a 0 byte
(null terminator)
int strlen(char s[])
{
 int n = 0;
 while (s[n] != 0) n++;
 return n;
}

CS61C L3 C Pointers (23) Beamer, Summer 2007 © UCB

Arrays vs. Pointers

•An array name is a read-only pointer
to the 0th element of the array.
•An array parameter can be declared as
an array or a pointer; an array
argument can be passed as a pointer.

int strlen(char s[])
{
 int n = 0;
 while (s[n] != 0)
 n++;
 return n;
}

int strlen(char *s)
{
 int n = 0;
 while (s[n] != 0)
 n++;
 return n;
}

Could be written:
while (s[n])

CS61C L3 C Pointers (24) Beamer, Summer 2007 © UCB

C Strings Headaches

•One common mistake is to forget to
allocate an extra byte for the null
terminator.
•More generally, C requires the
programmer to manage memory
manually (unlike Java or C++).

• When creating a long string by
concatenating several smaller strings,
the programmer must insure there is
enough space to store the full string!

• What if you don’t know ahead of time
how big your string will be?

• Buffer overrun security holes!

CS61C L3 C Pointers (25) Beamer, Summer 2007 © UCB

Common C Errors

•There is a difference between
assignment and equality
•a = b is assignment
•a == b is an equality test

•This is one of the most common
errors for beginning C programmers!

CS61C L3 C Pointers (26) Beamer, Summer 2007 © UCB

Pointer Arithmetic Peer Instruction Q

How many of the following are invalid?
I. pointer + integer
II. integer + pointer
III. pointer + pointer
IV. pointer – integer
V. integer – pointer
VI. pointer – pointer
VII. compare pointer to pointer
VIII. compare pointer to integer
IX. compare pointer to 0
X. compare pointer to NULL

#invalid
 1
 2
 3
 4
 5
 6
 7
 8
 9
(1)0

CS61C L3 C Pointers (27) Beamer, Summer 2007 © UCB

• How many of the following are invalid?
I. pointer + integer
II. integer + pointer
III. pointer + pointer
IV. pointer – integer
V. integer – pointer
VI. pointer – pointer
VII. compare pointer to pointer
VIII. compare pointer to integer
IX. compare pointer to 0
X. compare pointer to NULL

Pointer Arithmetic Peer Instruction Ans

ptr + 1
1 + ptr

ptr + ptr
ptr - 1
1 - ptr

ptr - ptr
ptr1 == ptr2

ptr == 1
ptr == NULL
ptr == NULL

#invalid
 1
 2
 3
 4
 5
 6
 7
 8
 9
(1)0

CS61C L3 C Pointers (28) Beamer, Summer 2007 © UCB

Pointer Arithmetic Summary
• x = *(p+1) ?

⇒ x = *(p+1) ;
• x = *p+1 ?

⇒ x = (*p) + 1 ;
• x = (*p)++ ?

⇒ x = *p ; *p = *p + 1;
• x = *p++ ? (*p++) ? *(p)++ ? *(p++) ?

⇒ x = *p ; p = p + 1;
• x = *++p ?

⇒ p = p + 1 ; x = *p ;

• Lesson?
• Using anything but the standard *p++ , (*p)++

causes more problems than it solves!

CS61C L3 C Pointers (29) Beamer, Summer 2007 © UCB

C String Standard Functions

• int strlen(char *string);
• compute the length of string

• int strcmp(char *str1, char *str2);
• return 0 if str1 and str2 are identical (how is

this different from str1 == str2?)

• char *strcpy(char *dst, char *src);
• copy the contents of string src to the memory

at dst. The caller must ensure that dst has
enough memory to hold the data to be copied.

CS61C L3 C Pointers (30) Beamer, Summer 2007 © UCB

Pointers to pointers (1/4)

•Sometimes you want to have a
procedure increment a variable?
•What gets printed?

void AddOne(int x)
{ x = x + 1; }

int y = 5;
AddOne(y);
printf(“y = %d\n”, y);

y = 5

…review…

CS61C L3 C Pointers (31) Beamer, Summer 2007 © UCB

Pointers to pointers (2/4)

•Solved by passing in a pointer to our
subroutine.
•Now what gets printed?

void AddOne(int *p)
{ *p = *p + 1; }

int y = 5;
AddOne(&y);
printf(“y = %d\n”, y);

y = 6

…review…

CS61C L3 C Pointers (32) Beamer, Summer 2007 © UCB

Pointers to pointers (3/4)

•But what if what you want changed is
a pointer?
•What gets printed?

void IncrementPtr(int *p)
{ p = p + 1; }

int A[3] = {50, 60, 70};
int *q = A;
IncrementPtr(q);
printf(“*q = %d\n”, *q);

*q = 50

50 60 70

A q

CS61C L3 C Pointers (33) Beamer, Summer 2007 © UCB

Pointers to pointers (4/4)

•Solution! Pass a pointer to a pointer,
called a handle, declared as **h
•Now what gets printed?

void IncrementPtr(int **h)
{ *h = *h + 1; }

int A[3] = {50, 60, 70};
int *q = A;
IncrementPtr(&q);
printf(“*q = %d\n”, *q);

*q = 60

50 60 70

A q q

CS61C L3 C Pointers (34) Beamer, Summer 2007 © UCB

Dynamic Memory Allocation (1/3)
•C has operator sizeof() which gives
size in bytes (of type or variable)
•Assume size of objects can be
misleading & is bad style, so use
sizeof(type)

• Many years ago an int was 16 bits, and
programs assumed it was 2 bytes

CS61C L3 C Pointers (35) Beamer, Summer 2007 © UCB

Dynamic Memory Allocation (2/3)

•To allocate room for something new to
point to, use malloc() (with the help of a
typecast and sizeof):
ptr = (int *) malloc (sizeof(int));

• Now, ptr points to a space somewhere in
memory of size (sizeof(int)) in bytes.
•(int *) simply tells the compiler what will
go into that space (called a typecast).

•malloc is almost never used for 1 var
ptr = (int *) malloc (n*sizeof(int));

• This allocates an array of n integers.

CS61C L3 C Pointers (36) Beamer, Summer 2007 © UCB

Dynamic Memory Allocation (3/3)

•Once malloc() is called, the memory
location contains garbage, so don’t
use it until you’ve set its value.
•After dynamically allocating space, we
must dynamically free it:
free(ptr);

•Use this command to clean up.

CS61C L3 C Pointers (37) Beamer, Summer 2007 © UCB

Binky Pointer Video (thanks to NP @ SU)

CS61C L3 C Pointers (38) Beamer, Summer 2007 © UCB

“And in Conclusion…”
•C99 is the update to the language
•Pointers and arrays are virtually same
•C knows how to increment pointers
•C is an efficient language, with little
protection

• Array bounds not checked
• Variables not automatically initialized

• (Beware) The cost of efficiency is
more overhead for the programmer.

• “C gives you a lot of extra rope but be
careful not to hang yourself with it!”

•Use handles to change pointers

