
CS61C L4 C Memory Management (1) Beamer, Summer 2007 © UCB

Scott Beamer, Instructor

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture #4 – C Memory Management

2007-06-28

iPhone Comes out Tomorrow

www.apple.com/iphone
CS61C L4 C Memory Management (2) Beamer, Summer 2007 © UCB

Review
• C99 is the update to the ANSI standard
• Pointers and arrays are virtually same
• C knows how to increment pointers
• C is an efficient language, w/little protection

• Array bounds not checked
• Variables not automatically initialized

• (Beware) The cost of efficiency is more
overhead for the programmer.

• “C gives you a lot of extra rope but be careful
not to hang yourself with it!”

• Use handles to change pointers
• P. 53 is a precedence table, useful for (e.g.,)

•x = ++*p; ⇒ *p = *p + 1 ; x = *p;

CS61C L4 C Memory Management (3) Beamer, Summer 2007 © UCB

Binky Pointer Video (thanks to NP @ SU)

CS61C L4 C Memory Management (4) Beamer, Summer 2007 © UCB

C structures : Overview

•A struct is a data structure
composed for simpler data types.

• Like a class in Java/C++ but without
methods or inheritance.

struct point {
 int x;
 int y;
};
void PrintPoint(struct point p)
{
 printf(“(%d,%d)”, p.x, p.y);
}

CS61C L4 C Memory Management (5) Beamer, Summer 2007 © UCB

C structures: Pointers to them

•The C arrow operator (->)
dereferences and extracts a structure
field with a single operator.
•The following are equivalent:

struct point *p;

printf(“x is %d\n”, (*p).x);
printf(“x is %d\n”, p->x);

CS61C L4 C Memory Management (6) Beamer, Summer 2007 © UCB

How big are structs?

•Recall C operator sizeof() which
gives size in bytes (of type or variable)
•How big is sizeof(p)?
 struct p {

char x;
int y;

};
• 5 bytes? 8 bytes?
• Compiler may word align integer y

CS61C L4 C Memory Management (7) Beamer, Summer 2007 © UCB

Linked List Example

•Let’s look at an example of using
structures, pointers, malloc(), and
free() to implement a linked list of
strings.

struct Node {
 char *value;
 struct Node *next;
};
typedef struct Node *List;

/* Create a new (empty) list */
List ListNew(void)
{ return NULL; }

CS61C L4 C Memory Management (8) Beamer, Summer 2007 © UCB

Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{
 struct Node *node =
 (struct Node*) malloc(sizeof(struct Node));
 node->value =
 (char*) malloc(strlen(string) + 1);
 strcpy(node->value, string);
 node->next = list;
 return node;
}

node:
list:

string:
“abc”

… …
NULL?

CS61C L4 C Memory Management (9) Beamer, Summer 2007 © UCB

Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{
 struct Node *node =
 (struct Node*) malloc(sizeof(struct Node));
 node->value =
 (char*) malloc(strlen(string) + 1);
 strcpy(node->value, string);
 node->next = list;
 return node;
}

node:
list:

string:
“abc”

… …
NULL?

?

CS61C L4 C Memory Management (10) Beamer, Summer 2007 © UCB

Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{
 struct Node *node =
 (struct Node*) malloc(sizeof(struct Node));
 node->value =
 (char*) malloc(strlen(string) + 1);
 strcpy(node->value, string);
 node->next = list;
 return node;
}

node:
list:

string:
“abc”

… …
NULL

?
“????”

CS61C L4 C Memory Management (11) Beamer, Summer 2007 © UCB

Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{
 struct Node *node =
 (struct Node*) malloc(sizeof(struct Node));
 node->value =
 (char*) malloc(strlen(string) + 1);
 strcpy(node->value, string);
 node->next = list;
 return node;
}

node:
list:

string:
“abc”

… …
NULL

?
“abc”

CS61C L4 C Memory Management (12) Beamer, Summer 2007 © UCB

Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{
 struct Node *node =
 (struct Node*) malloc(sizeof(struct Node));
 node->value =
 (char*) malloc(strlen(string) + 1);
 strcpy(node->value, string);
 node->next = list;
 return node;
}

node:
list:

string:
“abc”

… …
NULL

“abc”

CS61C L4 C Memory Management (13) Beamer, Summer 2007 © UCB

Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{
 struct Node *node =
 (struct Node*) malloc(sizeof(struct Node));
 node->value =
 (char*) malloc(strlen(string) + 1);
 strcpy(node->value, string);
 node->next = list;
 return node;
}

node: … …
NULL

“abc”

CS61C L4 C Memory Management (14) Beamer, Summer 2007 © UCB

“And in Semi-Conclusion…”

•Use handles to change pointers
•Create abstractions with structures
•Dynamically allocated heap memory
must be manually deallocated in C.

• Use malloc() and free() to allocate
and deallocate memory from heap.

CS61C L4 C Memory Management (15) Beamer, Summer 2007 © UCB

Which are guaranteed to print out 5?
I: main() {
 int *a-ptr; *a-ptr = 5; printf(“%d”, *a-ptr); }

II: main() {
 int *p, a = 5;
 p = &a; ...
 /* code; a & p NEVER on LHS of = */
 printf(“%d”, a); }

III: main() {
 int *ptr;
 ptr = (int *) malloc (sizeof(int));
 *ptr = 5;
 printf(“%d”, *ptr); }

Peer Instruction

 I II III
1: - - -
2: - - YES
3: - YES -
4: - YES YES
5: YES - -
6: YES - YES
7: YES YES -
8: YES YES YES

CS61C L4 C Memory Management (16) Beamer, Summer 2007 © UCB

int main(void){
int A[] = {5,10};
int *p = A;

printf(“%u %d %d %d\n”,p,*p,A[0],A[1]);
 p = p + 1;
printf(“%u %d %d %d\n”,p,*p,A[0],A[1]);
*p = *p + 1;
printf(“%u %d %d %d\n”,p,*p,A[0],A[1]);
}

If the first printf outputs 100 5 5 10, what will the other two
printf output?
1: 101 10 5 10 then 101 11 5 11
2: 104 10 5 10 then 104 11 5 11
3: 101 <other> 5 10 then 101 <3-others>
4: 104 <other> 5 10 then 104 <3-others>
5: One of the two printfs causes an ERROR
6: I surrender!

Peer Instruction

A[1]
5 10

A[0] p

CS61C L4 C Memory Management (17) Beamer, Summer 2007 © UCB

Administrivia

•Assignments
• HW1 due 7/1 @ 11:59pm
• HW2 due 7/4 @ 11:59pm

•No class on 7/4
•Another section is in the works

• It won’t be official until the last minute
• Keep checking the course website
• Once known I will email people on
waitlist

CS61C L4 C Memory Management (18) Beamer, Summer 2007 © UCB

Where is data allocated?

•Structure declaration does not
allocate memory
•Variable declaration does allocate
memory

• If declare outside a procedure,
allocated in static storage

• If declare inside procedure,
allocated on the stack
and freed when
procedure returns.

- NB: main() is a
procedure

int myGlobal;
main() {
 int myTemp;
}

CS61C L4 C Memory Management (19) Beamer, Summer 2007 © UCB

The Stack
•Stack frame includes:

• Return address
• Parameters
• Space for other local variables

•Stack frames contiguous
blocks of memory; stack pointer
tells where top stack frame is
•When procedure ends, stack
frame is tossed off the stack;
frees memory for future stack
frames frame

frame

frame

frameSP

CS61C L4 C Memory Management (20) Beamer, Summer 2007 © UCB

Stack

•Last In, First Out (LIFO) memory usage
main ()
{ a(0);
}

void a (int m)
{ b(1);
}
void b (int n)
{ c(2);
}
void c (int o)
{ d(3);
}void d (int p)
{
}

stack

Stack Pointer

Stack Pointer

Stack Pointer

Stack Pointer

Stack Pointer

CS61C L4 C Memory Management (21) Beamer, Summer 2007 © UCB

•Pointers in C allow access to deallocated
memory, leading to hard-to-find bugs !
int * ptr () {

int y;
y = 3;
return &y;

};
main () {
int *stackAddr,content;
stackAddr = ptr();
content = *stackAddr;
printf("%d", content); /* 3 */
content = *stackAddr;
printf("%d", content); /*13451514 */

};

Who cares about stack management?

main

ptr()
(y==3)

SP

main
SP main

printf()
(y==?)

SP

CS61C L4 C Memory Management (22) Beamer, Summer 2007 © UCB

C Memory Management
•C has 3 pools of memory

• Static storage: global variable storage,
basically permanent, entire program run

• The Stack: local variable storage,
parameters, return address
(location of "activation records" in Java or
"stack frame" in C)

• The Heap (dynamic storage): data lives
until deallocated by programmer

•C requires knowing where objects are in
memory, otherwise things don't work as
expected

• Java hides location of objects

CS61C L4 C Memory Management (23) Beamer, Summer 2007 © UCB

The Heap (Dynamic memory)
•Large pool of memory,
not allocated in contiguous order

• back-to-back requests for heap memory
could result blocks very far apart

• where Java new command allocates memory

• In C, specify number of bytes of memory
explicitly to allocate item
 int *ptr;
ptr = (int *) malloc(sizeof(int));
/* malloc returns type (void *),
so need to cast to right type */
•malloc(): Allocates raw, uninitialized
memory from heap

CS61C L4 C Memory Management (24) Beamer, Summer 2007 © UCB

Review: Normal C Memory Management
•A program’s address
space contains 4 regions:

• stack: local variables,
grows downward

• heap: space requested for
pointers via malloc() ;
resizes dynamically,
grows upward

• static data: variables
declared outside main,
does not grow or shrink

• code: loaded when
program starts, does not
change

code
static data
heap

stack

For now, OS somehow
prevents accesses between
stack and heap (gray hash
lines). Wait for virtual memory

~ FFFF FFFFhex

~ 0hex

CS61C L4 C Memory Management (25) Beamer, Summer 2007 © UCB

Intel 80x86 C Memory Management
•A C program’s 80x86
address space :

• heap: space requested for
pointers via malloc();
resizes dynamically,
grows upward

• static data: variables
declared outside main,
does not grow or shrink

• code: loaded when
program starts, does not
change

• stack: local variables,
grows downward

code
static data
heap

stack~ 08000000hex

CS61C L4 C Memory Management (26) Beamer, Summer 2007 © UCB

Memory Management

•How do we manage memory?
•Code, Static storage are easy:
they never grow or shrink
•Stack space is also easy:
stack frames are created and
destroyed in last-in, first-out (LIFO)
order
•Managing the heap is tricky:
memory can be allocated / deallocated
at any time

CS61C L4 C Memory Management (27) Beamer, Summer 2007 © UCB

Heap Management Requirements

•Want malloc() and free() to run
quickly.
•Want minimal memory overhead
•Want to avoid fragmentation –
when most of our free memory is in
many small chunks

• In this case, we might have many free
bytes but not be able to satisfy a large
request since the free bytes are not
contiguous in memory.

CS61C L4 C Memory Management (28) Beamer, Summer 2007 © UCB

Heap Management

•An example
• Request R1 for 100
bytes

• Request R2 for 1 byte
• Memory from R1 is
freed

• Request R3 for 50
bytes

R2 (1 byte)

R1 (100 bytes)

CS61C L4 C Memory Management (29) Beamer, Summer 2007 © UCB

Heap Management

•An example
• Request R1 for 100
bytes

• Request R2 for 1 byte
• Memory from R1 is
freed

• Request R3 for 50
bytes

R2 (1 byte)

R3?

R3?

CS61C L4 C Memory Management (30) Beamer, Summer 2007 © UCB

K&R Malloc/Free Implementation

•From Section 8.7 of K&R
• Code in the book uses some C language
features we haven’t discussed and is
written in a very terse style, don’t worry if
you can’t decipher the code

•Each block of memory is preceded by
a header that has two fields:
size of the block and
a pointer to the next block
•All free blocks are kept in a linked list,
the pointer field is unused in an
allocated block

CS61C L4 C Memory Management (31) Beamer, Summer 2007 © UCB

K&R Implementation

•malloc() searches the free list for a
block that is big enough. If none is
found, more memory is requested from
the operating system. If what it gets
can’t satisfy the request, it fails.
•free() checks if the blocks adjacent to
the freed block are also free

• If so, adjacent free blocks are merged
(coalesced) into a single, larger free block

• Otherwise, the freed block is just added to
the free list

CS61C L4 C Memory Management (32) Beamer, Summer 2007 © UCB

Choosing a block in malloc()

• If there are multiple free blocks of
memory that are big enough for some
request, how do we choose which one
to use?

• best-fit: choose the smallest block that is
big enough for the request

• first-fit: choose the first block we see that
is big enough

• next-fit: like first-fit but remember where
we finished searching and resume
searching from there

CS61C L4 C Memory Management (33) Beamer, Summer 2007 © UCB

Peer Instruction – Pros and Cons of fits

A. The con of first-fit is that it results in
many small blocks at the beginning
of the free list

B. The con of next-fit is it is slower
than first-fit, since it takes longer in
steady state to find a match

C. The con of best-fit is that it leaves
lots of tiny blocks

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L4 C Memory Management (34) Beamer, Summer 2007 © UCB

Tradeoffs of allocation policies

•Best-fit: Tries to limit fragmentation
but at the cost of time (must examine
all free blocks for each malloc).
Leaves lots of small blocks (why?)
•First-fit: Quicker than best-fit (why?)
but potentially more fragmentation.
Tends to concentrate small blocks at
the beginning of the free list (why?)
•Next-fit: Does not concentrate small
blocks at front like first-fit, should be
faster as a result.

CS61C L4 C Memory Management (35) Beamer, Summer 2007 © UCB

And in conclusion…
•C has 3 pools of memory

• Static storage: global variable storage,
basically permanent, entire program run

• The Stack: local variable storage,
parameters, return address

• The Heap (dynamic storage): malloc()
grabs space from here, free() returns it.

•malloc() handles free space with
freelist. Three different ways to find free
space when given a request:

• First fit (find first one that’s free)
• Next fit (same as first, but remembers
where left off)

• Best fit (finds most “snug” free space)

