CS61C : Machine Structures
Lecture #4 — C Memory Management
2007-06-28

Scott Beamer, Instructor

iPhone Comes out Tomorrow

e |
w www.apple.com/iphone
CSB1C L4 C Memory Management (1)

Beamer, Summer 2007 © UCB|

Binky Pointer Video (thanks to NP @ SU)

Pointeir Fun with

by Nick Parlante

This is document 104 in the Stanford CS
Education Library — please see
cslibrary.stanford.edu

for this video, its associated documents,
and other free educational materials.

Copyright © 1999 Nick Parlante. See copyright
panel for redistribution terms.
Carpe Post Meridiem!

w CS61C L4 C Memory Management (3)

Beamer, Summer 2007 © UCB|

Review

«C99 is the update to the ANSI standard

¢ Pointers and arrays are virtually same

« C knows how to increment pointers

« C is an efficient language, w/little protection
« Array bounds not checked
« Variables not automatically initialized

« (Beware) The cost of efficiency is more

overhead for the programmer.

- “C gives you a lot of extra rope but be careful
not to hang yourself with it!”

« Use handles to change pointers
«P. 53 is a precedence table, useful for (e.g.,)

Q! ‘X = +t¥p; = *p = *p + 1 x = *p;

C structures: Pointers to them

*The C arrow operator (->)
dereferences and extracts a structure
field with a single operator.

*The following are equivalent:
struct point *p;

printf (“x is %d\n”, (*p) .x);
printf (“x is %d\n”, p->x);

C structures : Overview

¢A struct is a data structure
composed for simpler data types.

+ Like a class in Java/C++ but without
methods or inheritance.

struct point {

int x;

int y;
}i
void PrintPoint (struct point p)
{

printf (“(%d,%d)”, p.x, p.y);

w CS61C L4 C Memory Management (4)

Beamer, Summer 2007 © UCB|

w CS61C L4 C Memory Management (5)

Beamer, Summer 2007 © UCB|

How big are structs?

*Recall C operator sizeof () which
gives size in bytes (of type or variable)

*How big is sizeof (p)?

struct p {
char x;
int y;
+5 bytes? 8 bytes?
+ Compiler may word align integer y

w CS61C L4 C Memory Management (6)

Beamer, Summer 2007 © UCB|

Linked List Example

eLet’s look at an example of using
structures, pointers, malloc é) ,and
free () to implement a linked list of
strings.
struct Node {
char *value;
struct Node *next;
};
typedef struct Node *List;

List ListNew (void)
@ { return NULL; }
CSB1C L4 Memory Wsnagement (7)

Beamer, Summer 2007 © UCB|

Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)

{
struct Node *node =
(struct Node*) malloc (sizeof (struct Node)) ;
node->value =
(char*) malloc(strlen(string) + 1);
strcpy (node->value, string);
node->next = list;
return node;
}
list:
node: = - -
‘ Yo) 7 1] NuLL
) string:
»“abc”

@ CS61C L4 C Memory Management (9)

Beamer, Summer 2007 © UCB|

Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{
struct Node *node =
(struct Node*) malloc (sizeof (struct Node)) ;
node->value =
(char*) malloc(strlen(string) + 1);
strcpy (node->value, string);
node->next = list;
return node;
}
list:

nfde:__ﬂ-y [T

</ 7 1] NuLL

) string:

»“abc”

w

abc
@ CS61C L4 C Memory Management (11)

”

Beamer, Summer 2007 © UCB|

Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{
struct Node *node =
(struct Node*) malloc (sizeof (struct Node)) ;
node->value =
(char*) malloc(strlen(string) + 1);
strcpy (node->value, string);
node->next = list;
return node;

}
list:
node: E__y .
) 7 || NULL
string:
»“abe”

@ CS61C L4 C Memory Management (8)

Beamer, Summer 2007 © UCB|

Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{
struct Node *node =
(struct Node*) malloc (sizeof (struct Node)) ;
node->value =
(char*) malloc(strlen(string) + 1);
strcpy (node->value, string);
node->next = list;
return node;

}
" list:
node: »| v
e LA
‘ — - 7 1] NuLL
n string:
> abe

W2 22927

@ CS81C L4 C Memory Management (10)

Beamer, Summer 2007 © UCB|

Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{
struct Node *node =
(struct Node*) malloc (sizeof (struct Node)) ;
node->value =
(char*) malloc(strlen(string) + 1);
strcpy (node->value, string);
node->next = list;
return node;
}
list:

node: ;;; e
‘ >~ 7 | NuLL
1 string:

g“ e

abc
@ CS61C L4 C Memory Management (12)

Beamer, Summer 2007 © UCB|

Linked List Example

/* add a string to an existing list */
List list_add(List list, char *string)
{
struct Node *node =
(struct Node*) malloc (sizeof (struct Node)) ;
node->value =
(char*) malloc(strlen(string) + 1);
strcpy (node->value, string);
node->next = list;
return node;

}

node: .

| __E/ | gl

—

w ”

abc
@ CS61C L4 C Memory Management (13)

Beamer, Summer 2007 © UCB|

Peer Instruction

Which are guaranteed to print out 5?

I: main() {
int *a-ptr; *a-ptr = 5; printf(“%d”, *a-ptr); }

II: main() {
int *p, a = 5;

P = &a; ...
printf(“%d”, a); } 1:
III: main() { §

int *ptr; 4'

tr = t * 11 i f(int)); L

P ir _(1n) malloc (sizeof(int)); 5. yES = =

printf(” 2ar , *ptr); } 6: YES - YES
7: YES YES -
8: YES YES YES

———Beamer, Summer 2007 © UCB|

CS81C L4 C Memory Management (15)

Administrivia

¢ Assignments
+HW1 due 7/1 @ 11:59pm
+HW2 due 7/4 @ 11:59pm

*No class on 7/4

* Another section is in the works
« It won’t be official until the last minute
» Keep checking the course website

» Once known | will email people on
waitlist

“And in Semi-Conclusion...”

¢ Use handles to change pointers
* Create abstractions with structures

* Dynamically allocated heap memory
must be manually deallocated in C.

*Use malloc () and free () to allocate
and deallocate memory from heap.

Beamer, Summer 2007 © UCB|

@ CS81C L4 C Memory Management (14)

Peer Instruction
int main(void){
int A[] = {5,10};
ot *p = A; A[0JA[1] P
prlntf("%u %d %d %d\n”,p,*p,A[0],A[1l]);

1;
prlntf("%u 44 3d %d\n”,p,*p,A[0],A[1]);

*p 1;
grlntf("%u %d ¢d %d\n”,p,*p,A[0],A[1]);

If the first prmtf outputs 100 5 5 10, what will the other two
printf output?

1: 101 10 5 10 then 101 11 5 11

2: 104 10 5 10 then 104 11 5 11

3: 101 <other> 5 10 then 101 <3-others>
4: 104 <other> 5 10 then 104 <3-others>
5: One of the two printfs causes an ERROR
6: I surrender!

@ ©S61C L4 C Memory Management (17)

Beamer, Summer 2007 © UCB|

@ CS81C L4 C Memory Management (16)

Beamer, Summer 2007 © UCB|

Where is data allocated?

* Structure declaration does not
allocate memory

«Variable declaration does allocate
memory

« If declare outside a procedure,
allocated in static storage

« If declare inside procedure,
allocated on the stack
and freed when
procedure returns.

- NB:main() isa
procedure }

@ CS81C L4 C Memory Management (18)

int myGlobal;
main() {
int myTemp;

Beamer, Summer 2007 © UCB|

The Stack

« Stack frame includes:
* Return address
* Parameters
« Space for other local variables

« Stack frames contiguous SP»| frame
blocks of memory; stack pointer

tells where top stack frame is frame
*When procedure ends, stack

frame Is tossed off the stack; frame

frees memory for future stack ;

frames rame

@ ©S61C L4 C Memory Management (19)

Beamer, Summer 2007 © UCB|

Who cares about stack management?

*Pointers in C allow access to deallocated
memory, leading to hard-to-find bugs !

mti:tp;'f 01 main sp main main
= 3; g -

3JSeturn &y, E);r_(z) E);T_tfé;

b SR s :

main () {
int *stackAddr, content;
stackAddr = ptr();
content = *stackAddr;
printf ("%d", content);
content = *stackAddr;
printf ("%d", content);

4
ﬂcssw L4 C Memory Management (21)

Beamer, Summer 2007 © UCB|

The Heap (Dynamic memory)

*Large pool of memory,
not allocated in contiguous order

+ back-to-back requests for heap memory
could result blocks very far apart

* where Java new command allocates memory
+In C, specify number of bytes of memory
explicitly to allocate item

int *ptr;
ptr = (int *) malloc(sizeof (int));

malloc (): Allocates raw, uninitialized
memory from heap

Stack

eLast In, First Out (LIFO) memory usage

stack

main ()
{ a(0);

void a (int m)
{ b(1);

}
void b (int n)
{ c(2);
}

void d (int p)
{
}

@ ©S61C L4 C Memory Management (20)

Stack Pointer =

Beamer, Summer 2007 © UCB|

C Memory Management
«C has 3 pools of memory

- Static storage: global variable storage,
basically permanent, entire program run

- The Stack: local variable storage,
parameters, return address
(location of "activation records" in Java or
"stack frame" in C)

- The Heap (dynamic storage): data lives
until deallocated by programmer

«C requires knowing where objects are in
memory, otherwise things don't work as
expected

CS81C L4 C Memory Management (23) Beamer, Summer 2007 © UCB|

@ - Java hides location of objects

CS81C L4 C Memory Management (22) Beamer, Summer 2007 © UCB|

Review: Normal C Memory Management

~ FFFF FFFF,,

¢ A program’s address stack
space contains 4 regions: [77 7.7

- stack: local variables,
grows downward

- heap: space requested for £
pointers viamalloc () ; — == =9
resizes dynamically, heap

grows upward

- static data: variables
declared outside main, code
does not grow or shrink ,

. code: loaded when For now, OS somehow
) prevents accesses between

program starts, does not ;. ... heap (gray hash
@ change lines). Wait for virtual memory
C881C L4 C Memory Management 24)

Beamer, Summer 2007 © UCB|

static data

Intel 80x86 C Memory Management

«A C program’s 80x86
address space :

* heap: space requested for
pointers viamalloc();
resizes dynamically, (/N Y
grows upward heap

- static data: variables

declared outside main, static data
does not grow or shrink

-code: loaded when code
program starts, does’H6Y" [stack
change 277/777

- stack: local variables,
grows downward

@ ©S61C L4 C Memory Management (25)

Beamer, Summer 2007 © UCB|

Heap Management Requirements

Wantmalloc () and free () to run
quickly.

« Want minimal memory overhead

*Want to avoid fragmentation -
when most of our free memory is in
many small chunks

« In this case, we might have many free
bytes but not be able to satisfy a large
request since the free bytes are not
contiguous in memory.

@ ©S61C L4 C Memory Management (27)

Beamer, Summer 2007 © UCB|

Heap Management

¢ An example

+ Request R1 for 100 R3?
bytes

* Request R2 for 1 byte

- Memory from R1is R2(1byte
freed

* Request R3 for 50
bytes R3?

Memory Management

*How do we manage memory?

*Code, Static storage are easy:
they never grow or shrink

« Stack space is also easy:
stack frames are created and
degtroyed in last-in, first-out (LIFO)
order

*Managing the heap is tricky:

memory can be allocated / deallocated
at any fime

@ ©S61C L4 C Memory Management (26)

Beamer, Summer 2007 © UCB|

Heap Management

¢ An example
* Request R1 for 100
bytes R1 (100 bytes)
* Request R2 for 1 byte

- Memory from R1is R2(1byte
freed

* Request R3 for 50
bytes

@ ©S61C L4 C Memory Management (29)

Beamer, Summer 2007 © UCB|

@ ©S61C L4 C Memory Management (28)

Beamer, Summer 2007 © UCB|

K&R Malloc/Free Implementation

*From Section 8.7 of K&R

+ Code in the book uses some C language
features we haven’t discussed and is
written in a very terse style, don’t worry if
you can’t decipher the code

¢ Each block of memory is preceded by
a header that has two fields:
size of the block and
a pointer to the next block

« All free blocks are kept in a linked list,
the pointer field is unused in an
z ,allocated block

CS81C L4 C Memory Management (30) Beamer, Summer 2007 © UCB|

K&R Implementation

emalloc () searches the free list for a
block that is big enough. If none is
found, more memory is requested from
the operating system. If what it gets
can’t satisfy the request, it fails.

e free () checks if the blocks adjacent to
the freed block are also free

« If so, adjacent free blocks are merged
(coalesced) into a single, larger free block

« Otherwise, the freed block is just added to
the free list

@ ©S61C L4 C Memory Management (31)

Beamer, Summer 2007 © UCB|

Peer Instruction — Pros and Cons of fits

A. The con of first-fit is that it results in ABC
many small blocks at the beginning |1: FFF
of the free list _3, T
B. The con of next-fit is it is slower = |4: rrT
than first-fit, since it takes longerin |5: Trr
steady state to find a match 6: TFT
C. The con of best-fit is that it leaves |17 TT°

__ lots of tiny blocks

.

eeeeeee Summer 2007 © UCB|

And in conclusion...
«C has 3 pools of memory

- Static storage: global variable storage,
basically permanent, entire program run

- The Stack: local variable storage,
parameters, return address

* The Heap (dynamic storage): malloc()
grabs space from here, free () returns it.

emalloc (I_) handles free space with
freelist. Three different ways to find free
space when given a request:

- First fit (find first one that’s free)

- Next fit (same as first, but remembers
where left off)

Choosing a block inmalloc()

«If there are multiple free blocks of
memory that are big enough for some
request, how do we choose which one
to use?

- best-fit: choose the smallest block that is
big enough for the request

- first-fit: choose the first block we see that
is big enough

- next-fit: like first-fit but remember where
we finished searching and resume
searching from there

@ ©S61C L4 C Memory Management (32)

Beamer, Summer 2007 © UCB|

Tradeoffs of allocation policies

e Best-fit: Tries to limit fragmentation
but at the cost of time (must examine
all free blocks for each maIIocL.
Leaves lots of small blocks (why?)

e First-fit: Quicker than best-fit (why?)
but potentially more fragmentation.
Tends to concentrate small blocks at
the beginning of the free list (why?)

* Next-fit: Does not concentrate small
blocks at front like first-fit, should be
faster as a result.

Q! - Best fit (finds most “snug” free space)

CS81C L4 C Memory Management (35) Beamer, Summer 2007 © UCB|

@ ©S61C L4 C Memory Management (34)

Beamer, Summer 2007 © UCB|

