
CS61C L5 Memory Management; Intro MIPS (1) Beamer, Summer 2007 © UCB

Scott Beamer, Instructor

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture #5 – Memory Management; Intro MIPS

2007-7-2

iPhone
Draws

Crowds
www.sfgate.com

CS61C L5 Memory Management; Intro MIPS (2) Beamer, Summer 2007 © UCB

Review
• C has 3 pools of memory

• Static storage: global variable storage, basically
permanent, entire program run

• The Stack: local variable storage, parameters,
return address

• The Heap (dynamic storage): malloc() grabs
space from here, free() returns it.
Nothing to do with heap data structure!

• malloc() handles free space with freelist.
Three different ways:

• First fit (find first one that’s free)
• Next fit (same as first, start where ended)
• Best fit (finds most “snug” free space)

•One problem with all three is small fragments!

CS61C L5 Memory Management; Intro MIPS (3) Beamer, Summer 2007 © UCB

Slab Allocator

•A different approach to memory
management (used in GNU libc)
•Divide blocks in to “large” and “small”
by picking an arbitrary threshold size.
Blocks larger than this threshold are
managed with a freelist (as before).
•For small blocks, allocate blocks in
sizes that are powers of 2

• e.g., if program wants to allocate 20
bytes, actually give it 32 bytes

CS61C L5 Memory Management; Intro MIPS (4) Beamer, Summer 2007 © UCB

Slab Allocator

•Bookkeeping for small blocks is
relatively easy: just use a bitmap for
each range of blocks of the same size
•Allocating is easy and fast: compute
the size of the block to allocate and
find a free bit in the corresponding
bitmap.
•Freeing is also easy and fast: figure
out which slab the address belongs to
and clear the corresponding bit.

CS61C L5 Memory Management; Intro MIPS (5) Beamer, Summer 2007 © UCB

Slab Allocator

16 byte blocks:

32 byte blocks:

64 byte blocks:

16 byte block bitmap: 11011000

32 byte block bitmap: 0111

64 byte block bitmap: 00

CS61C L5 Memory Management; Intro MIPS (6) Beamer, Summer 2007 © UCB

Slab Allocator Tradeoffs

•Extremely fast for small blocks.
•Slower for large blocks

• But presumably the program will take
more time to do something with a large
block so the overhead is not as critical.

•Minimal space overhead
•No fragmentation (as we defined it
before) for small blocks, but still have
wasted space!

CS61C L5 Memory Management; Intro MIPS (7) Beamer, Summer 2007 © UCB

Internal vs. External Fragmentation

•With the slab allocator, difference
between requested size and next
power of 2 is wasted

• e.g., if program wants to allocate 20
bytes and we give it a 32 byte block, 12
bytes are unused.

•We also refer to this as fragmentation,
but call it internal fragmentation since
the wasted space is actually within an
allocated block.
•External fragmentation: wasted space
between allocated blocks.

CS61C L5 Memory Management; Intro MIPS (8) Beamer, Summer 2007 © UCB

Buddy System

•Yet another memory management
technique (used in Linux kernel)
•Like GNU’s “slab allocator”, but only
allocate blocks in sizes that are
powers of 2 (internal fragmentation is
possible)
•Keep separate free lists for each size

• e.g., separate free lists for 16 byte, 32
byte, 64 byte blocks, etc.

CS61C L5 Memory Management; Intro MIPS (9) Beamer, Summer 2007 © UCB

Buddy System
• If no free block of size n is available, find
a block of size 2n and split it in to two
blocks of size n
•When a block of size n is freed, if its
neighbor of size n is also free, combine
the blocks in to a single block of size 2n

• Buddy is block in other half larger block

•Same speed advantages as slab allocator

buddies NOT buddies

CS61C L5 Memory Management; Intro MIPS (10) Beamer, Summer 2007 © UCB

Allocation Schemes

•So which memory management
scheme (K&R, slab, buddy) is
best?

•There is no single best approach for
every application.

•Different applications have different
allocation / deallocation patterns.

•A scheme that works well for one
application may work poorly for
another application.

CS61C L5 Memory Management; Intro MIPS (11) Beamer, Summer 2007 © UCB

Administrivia
•Third section is going to happen even
though it isn’t in telebears yet…

• It will start meeting today
• Discussion MW 5-6 in 320 Soda
• Lab TuTh 5-7 in 271 Soda

•Attend your assigned section (if you go)
• If you are on the waitlist, the third section is
your section

•HW3 and Proj1 will be posted in the next
few days

CS61C L5 Memory Management; Intro MIPS (12) Beamer, Summer 2007 © UCB

Automatic Memory Management

•Dynamically allocated memory is
difficult to track – why not track it
automatically?
• If we can keep track of what memory
is in use, we can reclaim everything
else.

• Unreachable memory is called garbage,
the process of reclaiming it is called
garbage collection.

•So how do we track what is in use?

CS61C L5 Memory Management; Intro MIPS (13) Beamer, Summer 2007 © UCB

Tracking Memory Usage

•Techniques depend heavily on the
programming language and rely on
help from the compiler.
•Start with all pointers in global
variables and local variables (root set).
•Recursively examine dynamically
allocated objects we see a pointer to.

• We can do this in constant space by
reversing the pointers on the way down

•How do we recursively find pointers in
dynamically allocated memory?

CS61C L5 Memory Management; Intro MIPS (14) Beamer, Summer 2007 © UCB

Tracking Memory Usage
• Again, it depends heavily on the

programming language and compiler.
• Could have only a single type of dynamically

allocated object in memory
• E.g., simple Lisp/Scheme system with only cons

cells (61A’s Scheme not “simple”)

• Could use a strongly typed language (e.g.,
Java)

• Don’t allow conversion (casting) between
arbitrary types.

• C/C++ are not strongly typed.

• Here are 3 schemes to collect garbage

CS61C L5 Memory Management; Intro MIPS (15) Beamer, Summer 2007 © UCB

Scheme 1: Reference Counting

•For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.
•When the count reaches 0, reclaim.
•Simple assignment statements can
result in a lot of work, since may
update reference counts of many
items

CS61C L5 Memory Management; Intro MIPS (16) Beamer, Summer 2007 © UCB

Reference Counting Example

•For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.

• When the count reaches 0, reclaim.
int *p1, *p2;
p1 = malloc(sizeof(int));
p2 = malloc(sizeof(int));
*p1 = 10; *p2 = 20;

p1
p2

1020Reference
count = 1

Reference
count = 1

CS61C L5 Memory Management; Intro MIPS (17) Beamer, Summer 2007 © UCB

Reference Counting Example

•For every chunk of dynamically
allocated memory, keep a count of
number of pointers that point to it.

• When the count reaches 0, reclaim.
int *p1, *p2;
p1 = malloc(sizeof(int));
p2 = malloc(sizeof(int));
*p1 = 10; *p2 = 20;
p1 = p2;

p1
p2

1020Reference
count = 2

Reference
count = 0

CS61C L5 Memory Management; Intro MIPS (18) Beamer, Summer 2007 © UCB

Reference Counting (p1, p2 are pointers)
p1 = p2;

• Increment reference count for p2
• If p1 held a valid value, decrement its
reference count
• If the reference count for p1 is now 0,
reclaim the storage it points to.

• If the storage pointed to by p1 held other
pointers, decrement all of their reference
counts, and so on…

•Must also decrement reference count
when local variables cease to exist.

CS61C L5 Memory Management; Intro MIPS (19) Beamer, Summer 2007 © UCB

Reference Counting Flaws

•Extra overhead added to assignments,
as well as ending a block of code.
•Does not work for circular structures!

• E.g., doubly linked list:

X Y Z

CS61C L5 Memory Management; Intro MIPS (20) Beamer, Summer 2007 © UCB

Scheme 2: Mark and Sweep Garbage Col.

• Keep allocating new memory until memory is
exhausted, then try to find unused memory.
• Consider objects in heap a graph, chunks of

memory (objects) are graph nodes, pointers to
memory are graph edges.

• Edge from A to B => A stores pointer to B

• Can start with the root set, perform a graph
traversal, find all usable memory!
• 2 Phases: (1) Mark used nodes;(2) Sweep free

ones, returning list of free nodes

CS61C L5 Memory Management; Intro MIPS (21) Beamer, Summer 2007 © UCB

Mark and Sweep

•Graph traversal is relatively easy to
implement recursively

°But with recursion, state is stored on
the execution stack.

°Garbage collection is invoked when not
much memory left

°As before, we could traverse in
constant space (by reversing pointers)

void traverse(struct graph_node *node) {
 /* visit this node */
 foreach child in node->children {
 traverse(child);
 }
}

CS61C L5 Memory Management; Intro MIPS (22) Beamer, Summer 2007 © UCB

Scheme 3: Copying Garbage Collection

•Divide memory into two spaces, only
one in use at any time.
•When active space is exhausted,
traverse the active space, copying all
objects to the other space, then make
the new space active and continue.

• Only reachable objects are copied!

•Use “forwarding pointers” to keep
consistency

• Simple solution to avoiding having to have a
table of old and new addresses, and to mark
objects already copied (see bonus slides)

CS61C L5 Memory Management; Intro MIPS (23) Beamer, Summer 2007 © UCB

Peer Instruction

A. Of {K&R, Slab, Buddy}, there is no best
(it depends on the problem).

B. Since automatic garbage collection can
occur any time, it is more difficult to
measure the execution time of a Java
program vs. a C program.

C. We don’t have automatic garbage
collection in C because of efficiency.

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L5 Memory Management; Intro MIPS (24) Beamer, Summer 2007 © UCB

“And in semi-conclusion…”
•Several techniques for managing heap via
malloc and free: best-, first-, next-fit

• 2 types of memory fragmentation: internal &
external; all suffer from some kind of frag.

• Each technique has strengths and
weaknesses, none is definitively best

•Automatic memory management relieves
programmer from managing memory.

• All require help from language and compiler
• Reference Count: not for circular structures
• Mark and Sweep: complicated and slow, works
• Copying: Divides memory to copy good stuff

CS61C L5 Memory Management; Intro MIPS (25) Beamer, Summer 2007 © UCB

Forwarding Pointers: 1st copy “abc”

From To

abc def

xyz

abc

?

CS61C L5 Memory Management; Intro MIPS (26) Beamer, Summer 2007 © UCB

Forwarding Pointers: leave ptr to new abc

From To

abc def

xyz

abc

?

CS61C L5 Memory Management; Intro MIPS (27) Beamer, Summer 2007 © UCB

Forwarding Pointers : now copy “xyz”

From To

def

xyz

abc

?

Forwarding pointer

CS61C L5 Memory Management; Intro MIPS (28) Beamer, Summer 2007 © UCB

Forwarding Pointers: leave ptr to new xyz

From To

def abc

xyzxyz

Forwarding pointer

CS61C L5 Memory Management; Intro MIPS (29) Beamer, Summer 2007 © UCB

Forwarding Pointers: now copy “def”

From To

def abc

xyz

Forwarding pointer

Forwarding pointer

Since xyz was already copied,
def uses xyz’s forwarding pointer
to find its new location

CS61C L5 Memory Management; Intro MIPS (30) Beamer, Summer 2007 © UCB

Forwarding Pointers

From To

def abc

xyz

def

Forwarding pointer

Forwarding pointer

Since xyz was already copied,
def uses xyz’s forwarding pointer
to find its new location

CS61C L5 Memory Management; Intro MIPS (31) Beamer, Summer 2007 © UCB

Assembly Language

•Basic job of a CPU: execute lots of
instructions.
• Instructions are the primitive
operations that the CPU may execute.
•Different CPUs implement different
sets of instructions. The set of
instructions a particular CPU
implements is an Instruction Set
Architecture (ISA).

• Examples: Intel 80x86 (Pentium 4),
IBM/Motorola PowerPC (Macintosh),
MIPS, Intel IA64, ...

CS61C L5 Memory Management; Intro MIPS (32) Beamer, Summer 2007 © UCB

Book: Programming From the Ground Up
“A new book was just released which is
based on a new concept - teaching
computer science through assembly
language (Linux x86 assembly language,
to be exact). This book teaches how the
machine itself operates, rather than just
the language. I've found that the key
difference between mediocre and excellent
programmers is whether or not they know assembly
language. Those that do tend to understand
computers themselves at a much deeper level.
Although [almost!] unheard of today, this concept isn't
really all that new -- there used to not be much choice
in years past. Apple computers came with only BASIC
and assembly language, and there were books
available on assembly language for kids. This is why
the old-timers are often viewed as 'wizards': they had
to know assembly language programming.”
 -- slashdot.org comment, 2004-02-05

CS61C L5 Memory Management; Intro MIPS (33) Beamer, Summer 2007 © UCB

Instruction Set Architectures

•Early trend was to add more and more
instructions to new CPUs to do
elaborate operations

• VAX architecture had an instruction to
multiply polynomials!

•RISC philosophy (Cocke IBM,
Patterson, Hennessy, 1980s) –
Reduced Instruction Set Computing

• Keep the instruction set small and simple,
makes it easier to build fast hardware.

• Let software do complicated operations by
composing simpler ones.

CS61C L5 Memory Management; Intro MIPS (34) Beamer, Summer 2007 © UCB

MIPS Architecture
•MIPS – semiconductor company
that built one of the first
commercial RISC architectures
•We will study the MIPS
architecture in some detail in this
class (also used in upper division
courses CS 152, 162, 164)
•Why MIPS instead of Intel 80x86?

• MIPS is simple, elegant. Don’t want
to get bogged down in gritty details.

• MIPS widely used in embedded apps,
x86 little used in embedded, and more
embedded computers than PCs

CS61C L5 Memory Management; Intro MIPS (35) Beamer, Summer 2007 © UCB

Assembly Variables: Registers (1/4)

•Unlike HLL like C or Java, assembly
cannot use variables

• Why not? Keep Hardware Simple

•Assembly Operands are registers
• limited number of special locations built
directly into the hardware

• operations can only be performed on
these!

•Benefit: Since registers are directly in
hardware, they are very fast
(faster than 1 billionth of a second)

CS61C L5 Memory Management; Intro MIPS (36) Beamer, Summer 2007 © UCB

Assembly Variables: Registers (2/4)

•Drawback: Since registers are in
hardware, there are a predetermined
number of them

• Solution: MIPS code must be very
carefully put together to efficiently use
registers

•32 registers in MIPS
• Why 32? Smaller is faster

•Each MIPS register is 32 bits wide
• Groups of 32 bits called a word in MIPS

CS61C L5 Memory Management; Intro MIPS (37) Beamer, Summer 2007 © UCB

Assembly Variables: Registers (3/4)

•Registers are numbered from 0 to 31
•Each register can be referred to by
number or name
•Number references:

$0, $1, $2, … $30, $31

CS61C L5 Memory Management; Intro MIPS (38) Beamer, Summer 2007 © UCB

Assembly Variables: Registers (4/4)

•By convention, each register also has
a name to make it easier to code
•For now:

$16 - $23  $s0 - $s7

(correspond to C variables)
$8 - $15  $t0 - $t7

(correspond to temporary variables)
Later will explain other 16 register names

• In general, use names to make your
code more readable

CS61C L5 Memory Management; Intro MIPS (39) Beamer, Summer 2007 © UCB

C, Java variables vs. registers

• In C (and most High Level Languages)
variables declared first and given a type

• Example:
int fahr, celsius;
char a, b, c, d, e;

•Each variable can ONLY represent a
value of the type it was declared as
(cannot mix and match int and char
variables).
• In Assembly Language, the registers
have no type; operation determines how
register contents are treated

CS61C L5 Memory Management; Intro MIPS (40) Beamer, Summer 2007 © UCB

“And in Conclusion…”

• In MIPS Assembly Language:
• Registers replace C variables
• One Instruction (simple operation) per line
• Simpler is Better
• Smaller is Faster

•New Registers:
C Variables: $s0 - $s7
Temporary Variables: $t0 - $t7

