
CS61C L6 Intro MIPS ; Load & Store (1) Beamer, Summer 2007 © UCB

Scott Beamer, Instructor

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture #6 – Intro MIPS; Load & Store

2007-7-3

Interesting Research
on Social Sites by

Danah Boyd

www.danah.org

CS61C L6 Intro MIPS ; Load & Store (2) Beamer, Summer 2007 © UCB

Review

•The operations a CPU can perform are
defined by its ISA (Instruction Set
Architecture)
• In MIPS Assembly Language:

• One Instruction (simple operation) per line
• Simpler is better, smaller is faster

•MIPS Registers (32 of them, each 32-bit)
• So far you know about $t0 - $t7 and $s0-
$s7

• Registers have no type, the operation tells
CPU how to treat it

CS61C L6 Intro MIPS ; Load & Store (3) Beamer, Summer 2007 © UCB

Comments in Assembly

•Another way to make your code more
readable: comments!
•Hash (#) is used for MIPS comments

• anything from hash mark to end of line is
a comment and will be ignored

•Note: Different from C.
• C comments have format
/* comment */
so they can span many lines

CS61C L6 Intro MIPS ; Load & Store (4) Beamer, Summer 2007 © UCB

Assembly Instructions

• In assembly language, each statement
(called an Instruction), executes
exactly one of a short list of simple
commands
•Unlike in C (and most other High Level
Languages), each line of assembly
code contains at most 1 instruction
• Instructions are related to operations
(=, +, -, *, /) in C or Java
•Ok, enough already…gimme my MIPS!

CS61C L6 Intro MIPS ; Load & Store (5) Beamer, Summer 2007 © UCB

MIPS Addition and Subtraction (1/4)
•Syntax of Instructions:

1 2,3,4
where:
1) operation by name
2) operand getting result (“destination”)
3) 1st operand for operation (“source1”)
4) 2nd operand for operation (“source2”)

•Syntax is rigid:
• 1 operator, 3 operands
• Why? Keep Hardware simple via regularity

CS61C L6 Intro MIPS ; Load & Store (6) Beamer, Summer 2007 © UCB

Addition and Subtraction of Integers (2/4)

•Addition in Assembly
• Example: add $s0,$s1,$s2 (in MIPS)

Equivalent to: a = b + c (in C)
where MIPS registers $s0,$s1,$s2 are
associated with C variables a, b, c

•Subtraction in Assembly
• Example: sub $s3,$s4,$s5 (in MIPS)

Equivalent to: d = e - f (in C)
where MIPS registers $s3,$s4,$s5 are
associated with C variables d, e, f

CS61C L6 Intro MIPS ; Load & Store (7) Beamer, Summer 2007 © UCB

Addition and Subtraction of Integers (3/4)

•How do the following C statement?
a = b + c + d - e;

•Break into multiple instructions
add $t0, $s1, $s2 # temp = b + c
add $t0, $t0, $s3 # temp = temp + d
sub $s0, $t0, $s4 # a = temp - e

•Notice: A single line of C may break up
into several lines of MIPS.
•Notice: Everything after the hash mark
on each line is ignored (comments)

CS61C L6 Intro MIPS ; Load & Store (8) Beamer, Summer 2007 © UCB

Addition and Subtraction of Integers (4/4)
•How do we do this?

f = (g + h) - (i + j);

•Use intermediate temporary register
add $t0,$s1,$s2 # temp = g + h
add $t1,$s3,$s4 # temp = i + j

sub $s0,$t0,$t1 # f=(g+h)-(i+j)

CS61C L6 Intro MIPS ; Load & Store (9) Beamer, Summer 2007 © UCB

Register Zero
•One particular immediate, the number
zero (0), appears very often in code.
•So we define register zero ($0 or
$zero) to always have the value 0; eg
add $s0,$s1,$zero (in MIPS)
f = g (in C)

where MIPS registers $s0,$s1 are
associated with C variables f, g

•defined in hardware, so an instruction
add $zero,$zero,$s0

will not do anything!
CS61C L6 Intro MIPS ; Load & Store (10) Beamer, Summer 2007 © UCB

Immediates

• Immediates are numerical constants.
•They appear often in code, so there
are special instructions for them.
•Add Immediate:

addi $s0,$s1,10 (in MIPS)
f = g + 10 (in C)

where MIPS registers $s0,$s1 are
associated with C variables f, g

•Syntax similar to add instruction,
except that last argument is a number
instead of a register.

CS61C L6 Intro MIPS ; Load & Store (11) Beamer, Summer 2007 © UCB

Immediates

•There is no Subtract Immediate in
MIPS: Why?
•Limit types of operations that can be
done to absolute minimum

• if an operation can be decomposed into a
simpler operation, don’t include it
•addi …, -X = subi …, X => so no subi

• addi $s0,$s1,-10 (in MIPS)
f = g - 10 (in C)

where MIPS registers $s0,$s1 are
associated with C variables f, g

CS61C L6 Intro MIPS ; Load & Store (12) Beamer, Summer 2007 © UCB

Peer Instruction

A. Types are associated with declaration
in C (normally), but are associated with
instruction (operator) in MIPS.

B. Since there are only 8 local ($s) and 8
temp ($t) variables, we can’t write
MIPS for C exprs that contain > 16 vars.

C. If p (stored in $s0) were a pointer to an
array of ints, then p++; would be
addi $s0 $s0 1

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L6 Intro MIPS ; Load & Store (13) Beamer, Summer 2007 © UCB

Administrivia
•WLA is a great resource

• wla.berkeley.edu

•Assignments
• HW2 due 7/5 @ 11:59pm
• HW3 due 7/8 @ 11:59pm (to be posted today)
• Proj1 due 7/12 @ 11:59pm (to be posted
today)

CS61C L6 Intro MIPS ; Load & Store (14) Beamer, Summer 2007 © UCB

Assembly Operands: Memory

•C variables map onto registers; what
about large data structures like arrays?
•1 of 5 components of a computer:
memory contains such data structures
•But MIPS arithmetic instructions only
operate on registers, never directly on
memory.
•Data transfer instructions transfer data
between registers and memory:

• Memory to register
• Register to memory

CS61C L6 Intro MIPS ; Load & Store (15) Beamer, Summer 2007 © UCB

Anatomy: 5 components of any Computer

Personal Computer

 Processor

Computer

Control
(“brain”)

Datapath
Registers

Memory Devices

Input

OutputLoad (from)Load (from)

Store (to)Store (to)

These are “data transfer” instructions…

Registers are in the datapath of the
processor; if operands are in memory,
we must transfer them to the processor
to operate on them, and then transfer
back to memory when done.

CS61C L6 Intro MIPS ; Load & Store (16) Beamer, Summer 2007 © UCB

Data Transfer: Memory to Reg (1/4)

•To transfer a word of data, we need to
specify two things:

• Register: specify this by # ($0 - $31) or
symbolic name ($s0,…, $t0, …)

• Memory address: more difficult
- Think of memory as a single one-

dimensional array, so we can address
it simply by supplying a pointer to a
memory address.

- Other times, we want to be able to
offset from this pointer.

•Remember: “Load FROM memory”

CS61C L6 Intro MIPS ; Load & Store (17) Beamer, Summer 2007 © UCB

Data Transfer: Memory to Reg (2/4)

•To specify a memory address to copy
from, specify two things:

• A register containing a pointer to memory
• A numerical offset (in bytes)

•The desired memory address is the
sum of these two values.
•Example: 8($t0)

• specifies the memory address pointed to
by the value in $t0, plus 8 bytes

CS61C L6 Intro MIPS ; Load & Store (18) Beamer, Summer 2007 © UCB

Data Transfer: Memory to Reg (3/4)
•Load Instruction Syntax:

1 2,3(4)
• where

1) operation name
2) register that will receive value
3) numerical offset in bytes
4) register containing pointer to memory

•MIPS Instruction Name:
•lw (meaning Load Word, so 32 bits
or one word are loaded at a time)

CS61C L6 Intro MIPS ; Load & Store (19) Beamer, Summer 2007 © UCB

Data Transfer: Memory to Reg (4/4)

Example:lw $t0,12($s0)
This instruction will take the pointer in $s0, add
12 bytes to it, and then load the value from the
memory pointed to by this calculated sum into
register $t0

• Notes:
•$s0 is called the base register
• 12 is called the offset
• offset is generally used in accessing elements

of array or structure: base reg points to
beginning of array or structure

Data flow

CS61C L6 Intro MIPS ; Load & Store (20) Beamer, Summer 2007 © UCB

Data Transfer: Reg to Memory

• Also want to store from register into memory
• Store instruction syntax is identical to Load’s

•MIPS Instruction Name:
sw (meaning Store Word, so 32 bits or one
word are loaded at a time)

• Example:sw $t0,12($s0)
This instruction will take the pointer in $s0, add 12
bytes to it, and then store the value from register
$t0 into that memory address

• Remember: “Store INTO memory”

Data flow

CS61C L6 Intro MIPS ; Load & Store (21) Beamer, Summer 2007 © UCB

Pointers v. Values

•Key Concept: A register can hold any
32-bit value. That value can be a
(signed) int, an unsigned int, a
pointer (memory address), and so on
• If you write add $t2,$t1,$t0

then $t0 and $t1
better contain values

• If you write lw $t2,0($t0)
then $t0 better contain a pointer

•Don’t mix these up!

CS61C L6 Intro MIPS ; Load & Store (22) Beamer, Summer 2007 © UCB

Addressing: Byte vs. word

•Every word in memory has an address,
similar to an index in an array
•Early computers numbered words like
C numbers elements of an array:
•Memory[0], Memory[1], Memory[2], …

Called the “address” of a word
•Computers needed to access 8-bit
bytes as well as words (4 bytes/word)
•Today machines address memory as
bytes, (i.e.,“Byte Addressed”) hence 32-
bit (4 byte) word addresses differ by 4
•Memory[0], Memory[4], Memory[8], …

CS61C L6 Intro MIPS ; Load & Store (23) Beamer, Summer 2007 © UCB

Compilation with Memory
•What offset in lw to select A[5] in C?
• 4x5=20 to select A[5]: byte v. word
•Compile by hand using registers:

g = h + A[5];
• g: $s1, h: $s2, $s3:base address of A

•1st transfer from memory to register:
lw $t0,20($s3) # $t0 gets A[5]

• Add 20 to $s3 to select A[5], put into $t0

•Next add it to h and place in g
add $s1,$s2,$t0 # $s1 = h+A[5]

CS61C L6 Intro MIPS ; Load & Store (24) Beamer, Summer 2007 © UCB

Notes about Memory
•Pitfall: Forgetting that sequential word
addresses in machines with byte
addressing do not differ by 1.

• Many an assembly language programmer
has toiled over errors made by assuming
that the address of the next word can be
found by incrementing the address in a
register by 1 instead of by the word size
in bytes.

• So remember that for both lw and sw, the
sum of the base address and the offset
must be a multiple of 4 (to be word
aligned)

CS61C L6 Intro MIPS ; Load & Store (25) Beamer, Summer 2007 © UCB

More Notes about Memory: Alignment

0 1 2 3
Aligned

Not
Aligned

•MIPS requires that all words start at byte
addresses that are multiples of 4 bytes

•Called Alignment: objects must fall on
address that is multiple of their size.

0, 4, 8, or Chex

Last hex digit
of address is:

1, 5, 9, or Dhex
2, 6, A, or Ehex
3, 7, B, or Fhex

CS61C L6 Intro MIPS ; Load & Store (26) Beamer, Summer 2007 © UCB

Role of Registers vs. Memory
•What if more variables than registers?

• Compiler tries to keep most frequently
used variable in registers

• Less common in memory: spilling

•Why not keep all variables in memory?
• Smaller is faster:
registers are faster than memory

• Registers more versatile:
- MIPS arithmetic instructions can read 2,

operate on them, and write 1 per instruction
- MIPS data transfer only read or write 1

operand per instruction, and no operation

CS61C L6 Intro MIPS ; Load & Store (27) Beamer, Summer 2007 © UCB

Example

•We want to accomplish the following:
int x = 5;

*p = *p + x + 10;

• In MIPS (assuming $s0 holds p)
addi $s1,$0,5 # x = 5
lw $t0,0($s0) # temp = *p

add $t0,$t0,$s1 # temp += x
addi $t0,$t0,10 # temp += 10

sw $t0,0($s0) # *p = temp

CS61C L6 Intro MIPS ; Load & Store (28) Beamer, Summer 2007 © UCB

Loading, Storing bytes 1/2

• In addition to word data transfers
(lw, sw), MIPS has byte data transfers:
• load byte: lb
•store byte: sb
•same format as lw, sw

CS61C L6 Intro MIPS ; Load & Store (29) Beamer, Summer 2007 © UCB

x

Loading, Storing bytes 2/2

•What do with other 24 bits in the 32 bit
register?
•lb: sign extends to fill upper 24 bits

byte
loaded…is copied to “sign-extend”

This bit

xxxx xxxx xxxx xxxx xxxx xxxx zzz zzzz

• Normally don't want to sign extend chars
• MIPS instruction that doesn’t sign extend
when loading bytes:

load byte unsigned: lbu
CS61C L6 Intro MIPS ; Load & Store (30) Beamer, Summer 2007 © UCB

“And in conclusion…”
• In MIPS Assembly Language:

• Registers replace C variables
• One Instruction (simple operation) per line
• Simpler is better, smaller is faster

• Memory is byte-addressable, but lw and sw access
one word at a time.

• One can store & load (signed and unsigned) bytes too
• A pointer (used by lw & sw) is just a mem address, so

we can add to it or subtract from it (via offset).
• New Instructions:

add, addi, sub, lw, sw, lb, sb, lbu

• New Registers:
C Variables: $s0 - $s7
Temporary Variables: $t0 - $t9
Zero: $zero

