CS61C : Machine Structures
Lecture #6 — Intro MIPS; Load & Store
2007-7-3

Scott Beamer, Instructor

Interesting Research
on Social Sites by
Danah Boyd

'Xanga.com
@LWEJOURNAE

_)
‘ﬁmys'?ﬁa?ﬁ.;ﬁﬁm‘ Yﬂu T“be www.danah.org
Broadcast Yourself
Q CS61C L6 Intro MIPS ; Load & Store (1)

Beamer, Summer 2007 © |

Review

* The operations a CPU can perform are
defined by its ISA (Instruction Set
Architecture)

In MIPS Assembly Language:
- One Instruction (simple operation) per line
- Simpler is better, smaller is faster

 MIPS Registers (32 of them, each 32-bit)

. §o7far you know about $t0 - $t7 and $s0-
S

. Re%isters have no type, the operation tells
CPU how to treat it

@ CS61C L6 Intro MIPS ; Load & Store (2) Beamer, Summer 2007 © |

Comments in Assembly

 Another way to make your code more
readable: comments!

*Hash (#) is used for MIPS comments

-anything from hash mark to end of line is
a comment and will be ignored

 Note: Different from C.
 C comments have format

so they can span many lines

Q CS61C L6 Intro MIPS ; Load & Store (3) Beamer, Summer 2007 © |

Assembly Instructions

*In assembly language, each statement
(called an Instruction), executes
exactly one of a short list of simple
commands

* Unlike in C (and most other High Level
Languages), each line of assembly
code contains at most 1 instruction

*Instructions are related to operations
(=, +,-,%/)in C or Java

e Ok, enough already...gimme my MIPS!

Q CS61C L6 Intro MIPS ; Load & Store (4) Beamer, Summer 2007 © |

MIPS Addition and Subtraction (1/4)

e Syntax of Instructions:
1 2,3,4
where:
1) operation by name
2) operand getting result (“destination”)
3) 1st operand for operation (“source1”)
4) 2nd operand for operation (“source2”)

e Syntax is rigid:
1 operator, 3 operands
2 *Why? Keep Hardware simple via regularity

CS61C L6 Intro MIPS ; Load & Store (5) Beamer, Summer 2007 © |

Addition and Subtraction of Integers (2/4)

e Addition in Assembly
Example: add $s0,$sl,$s2 (in MIPS)
Equivalentto: a = Db + c(in(C)
where MIPS registers $s0,$s1,$s2 are
associated with C variables a, b, c
e Subtraction in Assembly
Example: sub $s3,$s4,5$s5 (in MIPS)
Equivalentto: d = e - £(inC)

where MIPS registers $s3,$s4,$s5 are
associated with C variables d, e, f

Q CS61C L6 Intro MIPS ; Load & Store (6) Beamer, Summer 2007 © |

Addition and Subtraction of Integers (3/4)

@ CS61C L6 Intro MIPS ; Load & Store (7) Beamer, Summer 2007 © |

Addition and Subtraction of Integers (3/4)

 How do the following C statement?

@ CS61C L6 Intro MIPS ; Load & Store (7) Beamer, Summer 2007 © |

Addition and Subtraction of Integers (3/4)

 How do the following C statement?
a=b+c+d-e;

@ CS61C L6 Intro MIPS ; Load & Store (7) Beamer, Summer 2007 © |

Addition and Subtraction of Integers (3/4)

 How do the following C statement?
a=b+c+d-e;

e Break into multiple instructions
add $t0, $sl, $s2
add $t0, $t0, $s3
sub $s0, $t0, $s4

@ CS61C L6 Intro MIPS ; Load & Store (7) Beamer, Summer 2007 © |

Addition and Subtraction of Integers (3/4)

 How do the following C statement?
a=b+c+d-e;

e Break into multiple instructions
add $t0, $sl, $s2
add $t0, $t0, $s3
sub $s0, $t0, $s4

*Notice: A single line of C may break up
into several lines of MIPS.

Q CS61C L6 Intro MIPS ; Load & Store (7) Beamer, Summer 2007 © |

Addition and Subtraction of Integers (3/4)

 How do the following C statement?
a=b+c+d-e;

e Break into multiple instructions
add $t0, $sl, $s2
add $t0, $t0, $s3
sub $s0, $t0, $s4

*Notice: A single line of C may break up
into several lines of MIPS.

* Notice: Everything after the hash mark
(don each line is ignored (comments)

CS61C L6 Intro MIPS ; Load & Store (7) Beamer, Summer 2007 © |

Addition and Subtraction of Integers (4/4)

@ CS61C L6 Intro MIPS ; Load & Store (8) Beamer, Summer 2007 © |

Addition and Subtraction of Integers (4/4)

e How do we do this?

Q CS61C L6 Intro MIPS ; Load & Store (8) Beamer, Summer 2007 © |

Addition and Subtraction of Integers (4/4)

e How do we do this?
£f=(g+h) - (i+ 3);

@ CS61C L6 Intro MIPS ; Load & Store (8) Beamer, Summer 2007 © |

Addition and Subtraction of Integers (4/4)

e How do we do this?
f=(g+h) - (i+ 3);

* Use intermediate temporary register
add $t0,$sl,S$s2
add $tl,$s3,$s4
sub $s0,$t0,S$tl

Q CS61C L6 Intro MIPS ; Load & Store (8) Beamer, Summer 2007 © |

Register Zero

* One particular immediate, the number
zero (0), appears very often in code.

* SO0 we define register zero ($0 or
Szero) to always have the value 0; eg

add $s0,$sl,Szero (in MIPS)
f = g (in C)

where MIPS registers $s0,$s1 are
associated with C variables £, g

e defined in hardware, so an instruction

add $zero,Szero, $s0

@will not do anything!

CS61C L6 Intro MIPS ; Load & Store (9) Beamer, Summer 2007 © |

Immediates

e Immediates are numerical constants.

* They appear often in code, so there
are special instructions for them.
 Add Immediate:
addi $s0,$s1,10 (in MIPS)
f =g+ 10 (inC)
where MIPS registers $s0,$s1 are
associated with C variables £, g

e Syntax similar to add instruction,
except that last argument is a number
@ instead of a register.

CS61C L6 Intro MIPS ; Load & Store (10) Beamer, Summer 2007 © |

Immediates

Q CS61C L6 Intro MIPS ; Load & Store (11) Beamer, Summer 2007 © |

Immediates

e There is no Subtract Immediate in
MIPS: Why?

Q CS61C L6 Intro MIPS ; Load & Store (11) Beamer, Summer 2007 © |

Immediates

e There is no Subtract Immediate in
MIPS: Why?

 Limit types of operations that can be
done to absolute minimum

- if an operation can be decomposed into a
simpler operation, don’t include it

eaddi ..., -X=subi ..., X=>S0Nno subi

@ CS61C L6 Intro MIPS ; Load & Store (11) Beamer, Summer 2007 © |

Immediates

e There is no Subtract Immediate in
MIPS: Why?

 Limit types of operations that can be
done to absolute minimum

- if an operation can be decomposed into a
simpler operation, don’t include it

eaddi ..., -X=subi ..., X=>S0Nno subi

caddi $s0,%s1,-10 (in MIPS)
f =g - 10 (inC)

where MIPS registers $s0,$s1 are
ﬂ associated with C variables £, g

CS61C L6 Intro MIPS ; Load & Store (11) Beamer, Summer 2007 © |

Peer Instruction

C.

74

Types are associated with declaration
in C (normally), but are associated with
instruction (operator) in MIPS.

Since there are only 8 local ($s) and 8
’It\ﬁlrlnb gs t) variables, we can’t write

If p (stored in $s0) were a pointer to an
array of ints, then p++; would be
addi $s0 $s0 1

CS61C L6 Intro MIPS ; Load & Store (12)

or C exprs that contain > 16 vars.

ABC
: FFF
: FET
: FTF
: FTT
: TFF
: TET
: TTF
: TTT

Beamer, Summer 2007 © |

codJonuUurdkdWNE

Administrivia
 WLA is a great resource
- wla.berkeley.edu

 Assignments
*HW2 due 7/5 @ 11:59pm
HW3 due 7/8 @ 11:59pm (to be posted today)

*Proj1 due 7/12 @ 11:59pm (ito be posted
today)

Q CS61C L6 Intro MIPS ; Load & Store (13) Beamer, Summer 2007 © |

Assembly Operands: Memory

 C variables map onto registers; what
about large data structures like arrays?

*1 of 5 components of a computer:
memory contains such data structures

« But MIPS arithmetic instructions only
operate on registers, never directly on
memory.

 Data transfer instructions transfer data
between registers and memory:

* Memory to register
* Register to memory

CS61C L6 Intro MIPS ; Load & Store (14) Beamer, Summer 2007 © |

Anatomy: 5 components of any Computer

Registers are in the datapath of the

‘ processor; if operands are in memory,
- we must transfer them to the processor

Personal Computer to operate on them, and then transfer

back to memory when done.

Computer
Processor Memory Devices
Control Input
| (“brain”) | > g
(Datapath\ (\
Registers| Output

Q CS61C L6 Intro MIPS ; Load & Store (15) Beamer, Summer 2007 © |

Anatomy: 5 components of any Computer

Registers are in the datapath of the

‘ processor; if operands are in memory,
- we must transfer them to the processor

Personal Computer to operate on them, and then transfer

back to memory when done.

Computer
Processor Memory Devices
[Control | Input
| (“brain”) | > .
(Datapath\ (\
- - tput
Registersy—Load (from) | | Outpu)

Q CS61C L6 Intro MIPS ; Load & Store (15) Beamer, Summer 2007 © |

Anatomy: 5 components of any Computer

Personal Computer

Computer

Processor

Control
| (“brain”) |

(Datapath\ b
Registersy—

T\

Memory

Store (10)

v

L~
Load (from

)

Devices

Vs

g

Input

~N

Vs

g

Output

Q CS61C L6 Intro MIPS ; Load & Store (15)

Registers are in the datapath of the

‘ processor; if operands are in memory,
we must transfer them to the processor
to operate on them, and then transfer
back to memory when done.

Beamer, Summer 2007 © |

Anatomy: 5 components of any Computer

Registers are in the datapath of the
‘ processor; if operands are in memory,
- we must transfer them to the processor
Personal Computer to operate on them, and then transfer

back to memory when done.

Computer
Processor Memory Devices
(Control \ Input
_Cbrain®) J 1 giore (to)
-) |V ()
Datapath | | _

_ tput
Registergf— oad (from) | | Outpu)

These are “data transfer” instructions...

Q CS61C L6 Intro MIPS ; Load & Store (15) Beamer, Summer 2007 © |

Data Transfer: Memory to Reg (1/4)

 To transfer a word of data, we need to
specify two things:

- Register: specify this by # ($0 - $31) or
symbolic name ($s0,..., $t0, ...)
- Memory address: more difficult

- Think of memory as a single one-
dimensional array, so we can address
it simply by supplying a pointer to a
memory address.

- Other times, we want to be able to
offset from this pointer.

Remember: “Load FROM memory”

CS61C L6 Intro MIPS ; Load & Store (16) Beamer, Summer 2007 © |

Data Transfer: Memory to Reg (2/4)

* To specify a memory address to copy
from, specify two things:

* A register containing a pointer to memory
* A numerical offset (in bytes)

 The desired memory address is the
sum of these two values.

 Example: 8 ($t0)

- specifies the memory address pointed to
by the value in $t0, plus 8 bytes

@ CS61C L6 Intro MIPS ; Load & Store (17) Beamer, Summer 2007 © |

Data Transfer: Memory to Reg (3/4)

e Load Instruction Syntax:
1 2,3(4)
*where
1) operation name
2) register that will receive value
3) numerical offset in bytes
4) register containing pointer to memory

 MIPS Instruction Name:

- 1w (meaning Load Word, so 32 bits
or one word are loaded at a time)

Q CS61C L6 Intro MIPS ; Load & Store (18) Beamer, Summer 2007 © |

Data Transfer: Memory to Reg (4/4)

Example: 1w $t0,12 ($s0)

This instruction will take the pointer in $s0, add
12 bytes to it, and then load the value from the
memory pointed to by this calculated sum into
register $t0

* Notes:
« $s0 is called the base register

12 is called the offset

- offset is generally used in accessing elements
of array or structure: base reg points to
beginning of array or structure

Q CS61C L6 Intro MIPS ; Load & Store (19) Beamer, Summer 2007 © |

Data Transfer: Memory to Reg (4/4)

Data flow

Example: 1w $t0,12 ($s0)

This instruction will take the pointer in $s0, add
12 bytes to it, and then load the value from the
memory pointed to by this calculated sum into
register $t0

* Notes:
« $s0 is called the base register
* 12 is called the offset

- offset is generally used in accessing elements
of array or structure: base reg points to
beginning of array or structure

Q CS61C L6 Intro MIPS ; Load & Store (19) Beamer, Summer 2007 © |

Data Transfer: Reg to Memory

e Also want to store from register into memory
- Store instruction syntax is identical to Load’s

e MIPS Instruction Name:

sw (meaning Store Word, so 32 bits or one
word are loaded at a time)

e Example:sw $t0,12($s0)

This instruction will take the pointer in $s0, add 12

bytes to it, and then store the value from register
$t0 into that memory address

2 * Remember: “Store INTO memory”

CS61C L6 Intro MIPS ; Load & Store (20) Beamer, Summer 2007 © |

Data Transfer: Reg to Memory

e Also want to store from register into memory
- Store instruction syntax is identical to Load’s

e MIPS Instruction Name:

sw (meaning Store Word, so 32 bits or one
word are loaded at a time)

Data flow

e Example:sw $t0,12($s0)

This instruction will take the pointer in $s0, add 12

bytes to it, and then store the value from register
$t0 into that memory address

2 * Remember: “Store INTO memory”

CS61C L6 Intro MIPS ; Load & Store (20) Beamer, Summer 2007 © |

Pointers v. Values

* Key Concept: A register can hold any
32-bit value. That value can be a
(signed) int, an unsigned int, a
pointer (memory address), and so on

elf you write add $t2,$tl,$t0
then $t0 and stl
better contain values

If you write 1lw $t2,0(S5t0)
then $t0 better contain a pointer

 Don’t mix these up!

@ CS61C L6 Intro MIPS ; Load & Store (21) Beamer, Summer 2007 © |

Addressing: Byte vs. word

* Every word in memory has an address,
similar to an index in an array

e Early computers numbered words like
C numbers elements of an array:

eMemory[0], Memory[l], Memory[2], ...

Q CS61C L6 Intro MIPS ; Load & Store (22) Beamer, Summer 2007 © |

Addressing: Byte vs. word

* Every word in memory has an address,
similar to an index in an array

e Early computers numbered words like
C numbers elements of an array:

Memory [Ojﬁnory [’;I.] , Memory[2], ...

Called the™“address” of a wor

Q CS61C L6 Intro MIPS ; Load & Store (22) Beamer, Summer 2007 © |

Addressing: Byte vs. word

* Every word in memory has an address,
similar to an index in an array

e Early computers numbered words like
C numbers elements of an array:

Memory [Ojﬁnory [}] , Memory[2], ...

Called the™“address” of a wor

« Computers needed to access 8-bit
bytes as well as words (4 bytes/word)

Q CS61C L6 Intro MIPS ; Load & Store (22) Beamer, Summer 2007 © |

Addressing: Byte vs. word

* Every word in memory has an address,
similar to an index in an array

e Early computers numbered words like
C numbers elements of an array:

eMemory [Ojﬂnory [}] , Memory[2], ...

Called the™“address” of a wor

« Computers needed to access 8-bit
bytes as well as words (4 bytes/word)

e Today machines address memory as
bytes, (i.e.,“Byte Addressed”) hence 32-
bit (4 byte) word addresses differ by 4

Q Memory[0], Memory[4], Memory[8], ...

CS61C L6 Intro MIPS ; Load & Store (22) Beamer, Summer 2007 © |

Compilation with Memory
e What offset in 1w to selectA[5] in C?

e 4x5=20 to select A[5]: byte v. word

« Compile by hand using registers:
g=h + A[5];

* g: $s1, h: $s2, $s3:base address of A
 1st transfer from memory to register:

1w $t0,20($s3)
*Add 20 to $s3 to selectA[5], put into $t0
 Next add it to h and place in g
Qdd sl,Ss2,S$t0

CS61C L6 Intro MIPS ; Load & Store (23) Beamer, Summer 2007 © |

Notes about Memory

* Pitfall: Forgetting that sequential word
addresses in machines with byte
addressing do not differ by 1.

- Many an assembly language programmer
has toiled over errors made by assuming
that the address of the next word can be
found by incrementing the address in a
register by 1 instead of by the word size
in bytes.

- So remember that for both 1w and sw, the
sum of the base address and the offset
must be a multiple of 4 (to be word
aligned)

Q CS61C L6 Intro MIPS ; Load & Store (24) Beamer, Summer 2007 © |

More Notes about Memory: Alignment

* MIPS requires that all words start at byte
addresses that are multiples of 4 bytes

Last hex digit
of address is:

1,5,9 0rD,,,
2,6,A 0rE,,,
3,7, B,orF,,

@ CS61C L6 Intro MIPS ; Load & Store (25) Beamer, Summer 2007 © |

More Notes about Memory: Alignment

* MIPS requires that all words start at byte
addresses that are multiples of 4 bytes

Last hex digit
of address is:

Aligned
Aligned 2 6 A or E,,ex

Q CS61C L6 Intro MIPS ; Load & Store (25) Beamer, Summer 2007 © |

More Notes about Memory: Alignment

* MIPS requires that all words start at byte
addresses that are multiples of 4 bytes

Last hex digit
of address is:

Aligned

 Called Allgnment objects must fall on
address that is multiple of their size.

Q CS61C L6 Intro MIPS ; Load & Store (25) Beamer, Summer 2007 © |

Role of Registers vs. Memory

 What if more variables than registers?

- Compiler tries to keep most frequently
used variable in registers

-Less common in memory: spilling

* Why not keep all variables in memory?

-Smaller is faster:
registers are faster than memory

- Registers more versatile:

- MIPS arithmetic instructions can read 2,
operate on them, and write 1 per instruction

- MIPS data transfer only read or write 1
2 operand per instruction, and no operation

CS61C L6 Intro MIPS ; Load & Store (26) Beamer, Summer 2007 © |

Example

 We want to accomplish the following:
int x = 5;
*Pp = *p + x + 10;

In MIPS (assuming $s0 holds p)
addi $s1,$0,5
lw $t0,0($s0)
add $t0,$t0,$s1
addi $t0,$t0,10
sw $t0,0($s0)

@ CS61C L6 Intro MIPS ; Load & Store (27) Beamer, Summer 2007 © |

Loading, Storing bytes 1/2

e In addition to word data transfers
(1w, sw), MIPS has byte data transfers:

e load byte: 1b
e store byte: sb
esame format as 1w, sw

Q CS61C L6 Intro MIPS ; Load & Store (28) Beamer, Summer 2007 © |

Loading, Storing bytes 2/2

e What do with other 24 bits in the 32 bit

register?

 1b: sign extends to fill upper 24 bits

XXX XXX XXXX XXXX XXXX XXXX

Q CS61C L6 Intro MIPS ; Load & Store (29)

XZZZ ZZZZ

byte
loaded

Beamer, Summer 2007 © |

Loading, Storing bytes 2/2

« What do with other 24 bits in the 32 bit
register?

 1b: sign extends to fill upper 24 bits

XXX XXX XXX XXXX XXXX XXXX XZZZ ZZZZ

T byte
loaded
This bit

Q CS61C L6 Intro MIPS ; Load & Store (29) Beamer, Summer 2007 © |

Loading, Storing bytes 2/2

« What do with other 24 bits in the 32 bit
register?

 1b: sign extends to fill upper 24 bits

XXX XXX XXX XXXX XXXX XXXX XZZZ ZZZZ

— .
T byte
...Is copied to “sign-extend” loaded
This bit

@ CS61C L6 Intro MIPS ; Load & Store (29) Beamer, Summer 2007 © |

Loading, Storing bytes 2/2

« What do with other 24 bits in the 32 bit
register?

 1b: sign extends to fill upper 24 bits

XXX XXX XXX XXXX XXXX XXXX XZZZ ZZZZ

e T byte
...I1S copied to “sign-extend” loaded
This bit
e Normally don't want to sigh extend chars

* MIPS instruction that doesn’t sign extend
when loading bytes:

,(Q(load byte unsignhed: 1bu

CS61C L6 Intro MIPS ; Load & Store (29) Beamer, Summer 2007 © |

“And in conclusion...”

* In MIPS Assembly Language:
- Registers replace C variables
- One Instruction (simple operation) per line
- Simpler is better, smaller is faster
 Memory is byte-addressable, but 1w and sw access
one word at a time.
- One can store & load (signed and unsigned) bytes too
e A pointer (used by 1w & swz Is just a mem address, soO
we can add to it or subtract from it (via offset).

 New Instructions:
add, addi, sub, 1lw, sw, 1lb, sb, 1lbu

 New Registers:
C Variables: $s0 - $s7
Temporary Variables: $t0 - $t9

@ Zero: $zero
CS61C L6 Intro MIPS ; Load & Store (30) Beamer, Summer 2007 © |

