

l-Format Problems (0/3)

- Problem 0: Unsigned \# sign-extended?
- addiu, sltiu, sign-extends immediates to 32 bits. Thus, \# is a "signed" integer.

- Rationale

- addiu so that can add w/out overflow
- See K\&R pp. 230, 305
- sltiu suffers so that we can have ez HW
- Does this mean we'll get wrong answers?
- Nope, it means assembler has to handle any unsigned immediate $2^{15} \leq n<2^{16}$ (.e., with a in the 15th bit and 0 s in the upper 2 bytes) as it does for numbers that are too large. \Rightarrow

CS61c L10 MPPS Instruction Rerosentation Eloeting Point 1 (3)

Review...

- Logical and Shift Instructions
- Operate on individual bits (arithmetic operate on entire word)
- Use to isolate fields, either by masking or by shifting back \& forth
- Use shift left logical, sll, for multiplication by powers of 2
- Use shift right arithmetic, sra, for division by powers of 2
- Simplifying MIPS: Define instructions to be same size as data word one word) so that they can use the same memory (compiler can use 1w and sw).
- Computer actually stores programs as a series of these 32-bit numbers.
- MIPS Machine Language Instruction:
32 bits representing a single instruction

I-Format Problems (1/3)

- Problem 1

- Chances are that addi, lw, sw and slti will use immediates small enough to fit in the immediate field.
-...but what if it's too big?
- We need a way to deal with a 32-bit immediate in any l-format instruction. CS61C L10 MIPS Instruction Representation II, Floating Point 1 (4) Beamer, Summer 2007 ® UCB

I-Format Problems (3/3)

- Solution to Problem 1 (continued):
- So how does lui help us?
- Example:
addi $\$ t 0, \$ t 0,0 \times A B A B C D C D$ becomes:

lui	\$at, 0xABAB
ori	\$at, $\$ a t, 0 x C D C D$
add	$\$ t 0, \$ t 0, \$ a t$

- Now each I-format instruction has only a 16 bit immediate.
- Wouldn't it be nice if the assembler would this for us automatically? (later)

Tscictionesar x

Branches: PC-Relative Addressing (1/5)

- Use I-Format

opcode	rs	rt	immediate

- opcode specifies beq \mathbf{V}. bne
- rs and rt specify registers to compare
-What can immediate specify?
- Immediate is only 16 bits
- PC (Program Counter) has byte address of current instruction being executed; 32-bit pointer to memory

So immediate cannot specify entire address to branch to. \qquad

Branches: PC-Relative Addressing (3/5)

- Solution to branches in a 32-bit instruction: PC-Relative Addressing
- Let the 16-bit immediate field be a signed two's complement integer to be added to the PC if we take the branch.
- Now we can branch $\pm 2^{15}$ bytes from the PC, which should be enough to cover almost any loop.
- Any ideas to further optimize this?

CS61C L10 MPPS Instruction Reprosentation 11. Floating Point 1 (9) Beamer, Summer 2007 © uce

Branches: PC-Relative Addressing (5/5)

- Branch Calculation:
- If we don't take the branch:

$$
P C=P C+4
$$

$P C+4=$ byte address of next instruction

- If we do take the branch:
PC = (PC + 4) + (immediate * 4)
- Observations
- Immediate field specifies the number of words to jump, which is simply the number of instructions to jump.
- Immediate field can be positive or negative.
- Due to hardware, add immediate to (PC+4), not to PC; will be clearer why later in course sean

Branches: PC-Relative Addressing (2/5)

- How do we usually use branches?
- Answer: if-else, while, for
- Loops are generally small: typically up to 50 instructions
- Function calls and unconditional jumps are done using jump instructions (j and jal), not the branches.
- Conclusion: may want to branch to anywhere in memory, but a branch often changes PC by a small amount

Branches: PC-Relative Addressing (4/5)

- Note: Instructions are words, so they're word aligned (byte address is always a multiple of 4, which means it ends with 00 in binary).
- So the number of bytes to add to the PC will always be a multiple of 4 .
- So specify the immediate in words.
- Now, we can branch $\pm \mathbf{2 ~}^{15}$ words from the PC (or $\pm 2^{17}$ bytes), so we can handle loops 4 times as large.

Cal Cs61c L10 mPS Instruction Representation II, Floating Point I (10) Beamer, Summer 2007 \& UCB

Branch Example (1/3)

- MIPS Code:

Loop:	beq	$\$ 9, \$ 0$, End
	add	$\$ 8, \$ 8, \$ 10$
	addi	$\$ 9, \$ 9,-1$
End:	j	Loop

- beq branch is I-Format:
opcode $=4$ (look up in table)
rs = 9 (first operand)
$r t=0$ (second operand)
immediate =???

Branch Example (2/3)

- MIPS Code:

```
Loop: beq $9,$0,End
    addi $8,$8,$10
    addi $9,$9,-1
    j Loop
End:
```

- Immediate Field:
- Number of instructions to add to (or subtract from) the PC, starting at the instruction following the branch.
- In beq case, immediate = 3

CS61C L10 MIPS Instruction Representation II, Floating Point I (13) Beamer, Summer 2007 © UC

Branch Example (3/3)

- MIPS Code

Loop: beq addi addi j	\$9
	\$8, \$8, \$10
	\$9,\$9,-1
	Loop

End:
decimal representation:

4	9	0	3

binary representation:

| 000100 | 01001 | 00000 | 0000000000000011 |
| :--- | :--- | :--- | :--- | :--- |

Cll
CS61C L10 mPS Instruction Representation II. Floating Point I (14) Beamer, Summer 2007 © UCE

Questions on PC-addressing

- Does the value in branch field change if we move the code?
- What do we do if destination is $\boldsymbol{>} \mathbf{2}^{\mathbf{1 5}}$ instructions away from branch?
- Since it's limited to $\pm 2^{15}$ instructions, doesn't this generate lots of extra MIPS instructions?
- Why do we need all these addressing modes? Why not just one?
 Beamer, Summer 2007 © uc

J-Format Instructions (1/5)

- For branches, we assumed that we won't want to branch too far, so we can specify change in PC.
- For general jumps (j and jal), we may jump to anywhere in memory.
- Ideally, we could specify a 32-bit memory address to jump to.
- Unfortunately, we can't fit both a 6-bit opcode and a 32-bit address into a single 32-bit word, so we compromise.
 Beamer, Summer 2007 © UC

J-Format Instructions (2/5)

-Define "fields" of the following number of bits each:

6 bits	26 bits

- As usual, each field has a name:

opcode	target address

- Key Concepts
- Keep opcode field identical to R-format and l-format for consistency.
- Combine all other fields to make room for large target address.
.

J-Format Instructions (3/5)

- For now, we can specify 26 bits of the 32-bit bit address.

- Optimization:

- Note that, just like with branches, jumps will only jump to word aligned addresses, so last two bits are always 00 (in binary).
- So let's just take this for granted and not even specify them. CS51C L10 MPS Instruction Representation II, Floating Point 1 (20) Beamer, Summer 2007 © UC

J-Format Instructions (5/5)

- Summary:
- New PC = \{ PC[31..28], target address, 00 \}
- Understand where each part came from!
- Note: \{ , , \} means concatenation
$\{4$ bits', 26 bits, 2 bits $\}=32$ bit address
$\cdot\{1010,1111111111111111111111111,00\}$ = 1010111111111111111111111111100
- Note: Book uses II

CS61c L10 MPPS Instruction Reprosentation 11. Floating Point 1 (22)

J-Format Instructions (4/5)

- Now specify 28 bits of a 32-bit address
- Where do we get the other 4 bits?
- By definition, take the 4 highest order bits from the PC.
- Technically, this means that we cannot jump to anywhere in memory, but it's adequate 99.9999...\% of the time, since programs aren't that long
only if straddle a 256 MB boundary
- If we absolutely need to specify a 32-bit address, we can always put it in a register and use the jr instruction.
Cll \qquad

In semi-conclusion...						
- MIPS Machine Language Instruction: 32 bits representing a single instruction						
R	opcode	rs	rt	rd	shamt	funct
1	opcode	rs	rt	immediate		
J	opcode	target address				
- Branches use PC-relative addressing, Jumps use absolute addressing.						
- Disassembly is simple and starts by decoding opcode field. (more in a week)						
Cal						

Other Numbers

-What about other numbers?

- Very large numbers? (seconds/century) $3,155,760,000_{10}\left(3.15576_{10} \times 10^{9}\right)$
- Very small numbers? (atomic diameter) $0.00000001_{10}\left(1.0_{10} \times 10^{-8}\right)$
- Rationals (repeating pattern) 2/3
(0.666666666. . .)
- Irrationals $2^{1 / 2} \quad$ (1.414213562373...)
- Transcendentals e(2.718...), π (3.141...)
6
All represented in scientific notation CS61C L10 MIPS Instruction Representation II, Floating Point (27) Beamer, Summer 2007 \& UC

Scientific Notation (in Binary)

- Computer arithmetic that supports it called floating point, because it represents numbers where the binary point is not fixed, as it is for integers
- Declare such variable in C as float

Cls

Floating Point Representation (2/2)
-What if result too large? (> 2.0×10^{38})

- Overflow!
- Overflow \Rightarrow Exponent larger than represented in 8-bit Exponent field
-What if result too small? (>0, < 2.0×10^{-38})
- Underflow!
- Underflow \Rightarrow Negative exponent larger than represented in 8-bit Exponent field
- How to reduce chances of overflow or underflow?
 Beamer, Summer 2007 © uce

Double Precision Fl. Pt. Representation	
- Next Multiple of Word Size (64 bits)	
$$	$\begin{array}{ll} \\ \hline \text { Significand } & 0 \\ \hline \end{array}$
1 bit 11 bits	20 bits
Significand (cont'd)	
32 bits- Double Precision (vs. Single Precision)	
- C variable declared as double	
- Represent numbers almost as small as 2.0×10^{-308} to almost as large as 2.0×10^{308}	
- But primary advantage is greater accuracy due to larger significand	

QUAD Precision FI. Pt. Representation

- Next Multiple of Word Size (128 bits)
- Unbelievable range of numbers
- Unbelievable precision (accuracy)
- This is currently being worked on
- The current version has 15 bits for the
exponent and 112 bits for the
significand
- Oct-Precision? It's been implemented
before... (256 bit)
- Half-Precision? Yep, that's for a short
(16 bit)
Cal

IEEE 754 Floating Point Standard (1/4)

- Single Precision, DP similar
- Sign bit: $\quad 1 \begin{aligned} & 1 \text { means negative } \\ & 0 \text { means positive }\end{aligned}$
- Significand:
- To pack more bits, leading 1 implicit for normalized numbers
- $1+23$ bits single, $1+52$ bits double
- always true: $0<$ Significand < 1 (for normalized numbers)
- Note: 0 has no leading 1, so reserve exponent value 0 just for number 0
 Beamer, Summer 2007 © UCB

IEEE 754 Floating Point Standard (3/4)

```
    - Negative Exponent?
        - 2's comp? 1.0 x 2-1 v. 1.0 x2+1 (1/2 v. 2)
1/2 0
2
    0| 0000 0001 000 00000000000000000000
        - This notation using integer compare of
        1/2 v. 2 makes 1/2 > 2!
    - Instead, pick notation 0000 0001 is most
        negative, and 1111 1111 is most positive
        -1.0 x 2-1 v. 1.0 x2+1 (1/2 v. 2)
    1/200}00111111000000000000000000000000
    2 0. 10000000|000000000000000000000000
    CS61C L10 MPS Instruction Representation IIIFIOating Point। (36) Beamer, Summer 2007 ® UCB
```

Peer Instruction	
What is the decimal equivalent of the floating pt \# above?	
	Beames, summer

IEEE 754 Floating Point Standard (2/4)

- Kahan wanted FP numbers to be used even if no FP hardware; e.g., sort records with FP numbers using integer compares
- Could break FP number into 3 parts: compare signs, then compare exponents, then compare significands
- Wanted it to be faster, single compare if possible, especially if positive numbers
- Then want order:
- Highest order bit is sign (negative < positive)
- Exponent next, so big exponent => bigger \# - Significand last: exponents same => bigger \#

IEEE 754 Floating Point Standard (4/4)

- Called Biased Notation, where bias is number subtract to get real number
- IEEE 754 uses bias of 127 for single prec.
- Subtract 127 from Exponent field to get actual value for exponent - 1023 is bias for double precision
- Summary (single precision):

3130
3130 S Exponent
1 bit 8 bits

$\cdot(-1)^{\mathrm{S}} \times\left(1+\right.$ Significand) $\times 2^{\text {(Exponent-127) }}$

- Double precision identical, except with
exponent bias of 1023

[^0]
[^0]: "And in conclusion..."

 - Floating Point numbers approximate values that we want to use.
 - IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers
 - Every desktop or server computer sold since ~1997 follows these conventions
 - Summary (single precision):

 | 3130 | | | |
 | :---: | :---: | :---: | :---: |
 | Exponent | | Significand | 0 |
 | 1 bit 8 bits | | | |

 $\cdot(-1)^{\mathrm{S}} \times\left(1+\right.$ Significand) $\times 2^{\text {(Exponent-127) }}$

