inst.eecs.berkeley.edu/~cs61c

CS61C: Machine Structures

Lecture #10 – Instruction Representation II, Floating Point I

2007-7-11

Scott Beamer, Instructor

T - Mobile releases HotSpotAtHome

Review...

- Logical and Shift Instructions
 - Operate on individual bits (arithmetic operate on entire word)
 - Use to isolate fields, either by masking or by shifting back & forth
 - Use shift left logical, s11, for multiplication by powers of 2
 - Use shift right arithmetic, sra, for division by powers of 2
- Simplifying MIPS: Define instructions to be same size as data word (one word) so that they can use the same memory (compiler can use 1w and sw).
- Computer actually stores programs as a series of these 32-bit numbers.
- MIPS Machine Language Instruction: 32 bits representing a single instruction

₹	opcode	rs	rt	rd shamt funct			
	opcode	rs	rt	immediate			
J	opcode		target address				

I-Format Problems (0/3)

- Problem 0: Unsigned # sign-extended?
 - addiu, sltiu, sign-extends immediates to 32 bits. Thus, # is a "signed" integer.
- Rationale
 - addiu so that can add w/out overflow
 - See K&R pp. 230, 305
 - sltiu suffers so that we can have ez HW
 - Does this mean we'll get wrong answers?
 - Nope, it means assembler has to handle any unsigned immediate 2¹⁵ ≤ n < 2¹⁶ (l.e., with a 1 in the 15th bit and 0s in the upper 2 bytes) as it does for numbers that are too large. ⇒

I-Format Problems (1/3)

Problem 1:

- Chances are that addi, lw, sw and slti will use immediates small enough to fit in the immediate field.
- ...but what if it's too big?
- We need a way to deal with a 32-bit immediate in any I-format instruction.

I-Format Problems (2/3)

Solution to Problem 1:

- Handle it in software + new instruction
- Don't change the current instructions: instead, add a new instruction to help out

New instruction:

lui register, immediate

- stands for Load Upper Immediate
- takes 16-bit immediate and puts these bits in the upper half (high order half) of the specified register

I-Format Problems (3/3)

- Solution to Problem 1 (continued):
 - So how does lui help us?
 - Example:

```
addi $t0,$t0, 0xABABCDCD
```

becomes:

```
lui $at, 0xABAB
ori $at, $at, 0xCDCD
add $t0,$t0,$at
```

- Now each I-format instruction has only a 16bit immediate.
- Wouldn't it be nice if the assembler would this for us automatically? (later)

Branches: PC-Relative Addressing (1/5)

Use I-Format

- opcode specifies beq V. bne
- rs and rt specify registers to compare
- What can immediate specify?
 - Immediate is only 16 bits
 - PC (Program Counter) has byte address of current instruction being executed;
 32-bit pointer to memory
 - So immediate cannot specify entire address to branch to.

Branches: PC-Relative Addressing (2/5)

- How do we usually use branches?
 - Answer: if-else, while, for
 - Loops are generally small: typically up to 50 instructions
 - Function calls and unconditional jumps are done using jump instructions (j and jal), not the branches.
- Conclusion: may want to branch to anywhere in memory, but a branch often changes PC by a small amount

Branches: PC-Relative Addressing (3/5)

- Solution to branches in a 32-bit instruction: PC-Relative Addressing
- Let the 16-bit immediate field be a signed two's complement integer to be added to the PC if we take the branch.
- Now we can branch ± 2¹⁵ bytes from the PC, which should be enough to cover almost any loop.
- Any ideas to further optimize this?

Branches: PC-Relative Addressing (4/5)

- Note: Instructions are words, so they're word aligned (byte address is always a multiple of 4, which means it ends with 00 in binary).
 - So the number of bytes to add to the PC will always be a multiple of 4.
 - So specify the immediate in words.
- Now, we can branch ± 2¹⁵ words from the PC (or ± 2¹⁷ bytes), so we can handle loops 4 times as large.

Branches: PC-Relative Addressing (5/5)

- Branch Calculation:
 - If we don't take the branch:

$$PC = PC + 4$$

PC+4 = byte address of next instruction

• If we do take the branch:

$$PC = (PC + 4) + (immediate * 4)$$

- Observations
 - Immediate field specifies the number of words to jump, which is simply the number of instructions to jump.
 - Immediate field can be positive or negative.
 - Due to hardware, add immediate to (PC+4), not to PC; will be clearer why later in course

Branch Example (1/3)

MIPS Code:

```
Loop: beq $9,$0,<u>End</u>
add $8,$8,$10
addi $9,$9,-1
j Loop
```

End:

•beq branch is I-Format:

```
opcode = 4 (look up in table)
```


Branch Example (2/3)

MIPS Code:

```
Loop: beq $9,$0,<u>End</u>
addi $8,$8,$10
addi $9,$9,-1
j Loop
End:
```

- Immediate Field:
 - Number of instructions to add to (or subtract from) the PC, starting at the instruction following the branch.
 - In beq case, immediate = 3

Branch Example (3/3)

MIPS Code:

```
Loop: beq $9,$0,End addi $8,$8,$10 addi $9,$9,-1 j Loop
End:
```

decimal representation:

1 • • • • • • • • • • • • • • • • • • •		^	2
4	9	U	3

binary representation:

	000100	01001	00000	00000000000011
--	--------	-------	-------	----------------

Questions on PC-addressing

- Does the value in branch field change if we move the code?
- What do we do if destination is > 2¹⁵ instructions away from branch?
- Since it's limited to ± 2¹⁵ instructions, doesn't this generate lots of extra MIPS instructions?
- Why do we need all these addressing modes? Why not just one?

Administrivia

Any questions on course issues?

Green Sheet Errors

- Section 1: The Core Instruction Set
 - Ib, Ibu, Iw scratch out 0/
 - sll, srl shift rt not rs so change R[rs] to R[rt]
 - jal should be R[31] = PC + 8, not +4
- Section 2: Register Name, Number, Use, Call Convention
 - \$ra is not preserved across calls so make yes a no

J-Format Instructions (1/5)

- For branches, we assumed that we won't want to branch too far, so we can specify *change* in PC.
- For general jumps (j and jal), we may jump to *anywhere* in memory.
- Ideally, we could specify a 32-bit memory address to jump to.
- Unfortunately, we can't fit both a 6-bit opcode and a 32-bit address into a single 32-bit word, so we compromise.

J-Format Instructions (2/5)

 Define "fields" of the following number of bits each:

6 bits 26 bits

As usual, each field has a name:

opcode target address	
-----------------------	--

- Key Concepts
 - Keep opcode field identical to R-format and I-format for consistency.
 - Combine all other fields to make room for large target address.

J-Format Instructions (3/5)

- For now, we can specify 26 bits of the 32-bit bit address.
- Optimization:
 - Note that, just like with branches, jumps will only jump to word aligned addresses, so last two bits are always 00 (in binary).
 - So let's just take this for granted and not even specify them.

J-Format Instructions (4/5)

- Now specify 28 bits of a 32-bit address
- Where do we get the other 4 bits?
 - By definition, take the 4 highest order bits from the PC.
 - Technically, this means that we cannot jump to anywhere in memory, but it's adequate 99.9999...% of the time, since programs aren't that long
 - only if straddle a 256 MB boundary
 - If we absolutely need to specify a 32-bit address, we can always put it in a register and use the jr instruction.

J-Format Instructions (5/5)

- Summary:
 - New PC = { PC[31..28], target address, 00 }
- Understand where each part came from!
- Note: { , , } means concatenation
 { 4 bits , 26 bits , 2 bits } = 32 bit
 address
 - •{ 1010, 1111111111111111111111111111, 00 } = 101011111111111111111111111100
 - Note: Book uses II

Peer Instruction Question

(for A,B) When combining two C files into one executable, recall we can compile them independently & then merge them together.

- A. Jump insts don't require any changes.
- B. Branch insts don't require any changes.
- C. You now have all the tools to be able to "decompile" a stream of 1s and 0s into C!

- 1: FFF
- 2: **FFT**
- 3: **FTF**
- 4: FTT
- 5: **TFF**
- 6: **TFT**
- 7: TTF
- 8: TTT

In semi-conclusion...

MIPS Machine Language Instruction:
 32 bits representing a single instruction

R	opcode	rs	rt	rd	shamt	funct
I	opcode	rs	rt	immediate		
J	opcode	target address				

- Branches use PC-relative addressing, Jumps use absolute addressing.
- Disassembly is simple and starts by decoding opcode field. (more in a week)

Quote of the day

"95% of the folks out there are completely clueless about floating-point."

James Gosling Sun Fellow Java Inventor 1998-02-28

Review of Numbers

- Computers are made to deal with numbers
- What can we represent in N bits?
 - Unsigned integers:

0 to
$$2^{N}-1$$

Signed Integers (Two's Complement)

$$-2^{(N-1)}$$
 to $2^{(N-1)} - 1$

Other Numbers

- What about other numbers?
 - Very large numbers? (seconds/century)
 3,155,760,000₁₀ (3.15576₁₀ x 10⁹)
 - Very small numbers? (atomic diameter)
 0.00000001₁₀ (1.0₁₀ x 10⁻⁸)

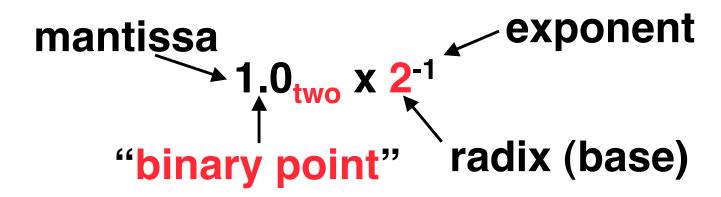
 - Irrationals (1.414213562373. . .)
 - Transcendentals e (2.718...), π (3.141...)

All represented in scientific notation

Scientific Notation (in Decimal)

- Normalized form: no leadings 0s (exactly one digit to left of decimal point)
- Alternatives to representing 1/1,000,000,000
 - Normalized: 1.0 x 10⁻⁹
 - Not normalized: 0.1 x 10⁻⁸,10.0 x 10⁻¹⁰

Scientific Notation (in Binary)



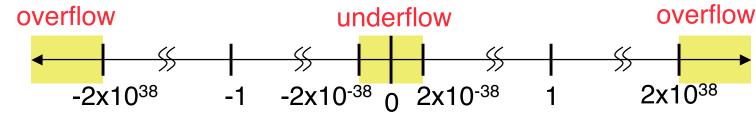
- Computer arithmetic that supports it called <u>floating point</u>, because it represents numbers where the binary point is not fixed, as it is for integers
 - Declare such variable in C as float

Floating Point Representation (1/2)

- Normal format: +1.xxxxxxxxxxxxttwo*2yyyytwo
- Multiple of Word Size (32 bits)
- 31 30 23 22 0
 S Exponent Significand
 1 bit 8 bits 23 bits
 - S represents Sign
 Exponent represents y's Significand represents x's
 - Represent numbers as small as 2.0 x 10⁻³⁸ to as large as 2.0 x 10³⁸

Floating Point Representation (2/2)

- What if result too large? (> 2.0x10³⁸)
 - Overflow!
 - Overflow ⇒ Exponent larger than represented in 8-bit Exponent field
- What if result too small? (>0, $< 2.0 \times 10^{-38}$)
 - Underflow!
 - Underflow ⇒ Negative exponent larger than represented in 8-bit Exponent field
- How to reduce chances of overflow or underflow?



Double Precision Fl. Pt. Representation

Next Multiple of Word Size (64 bits)

3 <u>1 30</u>	20	0		
S	Exponent	Significand		
1 bit	11 bits	20 bits		
	Significand (cont'd)			

32 bits

- Double Precision (vs. Single Precision)
 - C variable declared as double
 - Represent numbers almost as small as 2.0 x 10⁻³⁰⁸ to almost as large as 2.0 x 10³⁰⁸
 - But primary advantage is greater accuracy due to larger significand

QUAD Precision Fl. Pt. Representation

- Next Multiple of Word Size (128 bits)
- Unbelievable range of numbers
- Unbelievable precision (accuracy)
- This is currently being worked on
- The current version has 15 bits for the exponent and 112 bits for the significand
- Oct-Precision? It's been implemented before... (256 bit)
- Half-Precision? Yep, that's for a short (16 bit)

IEEE 754 Floating Point Standard (1/4)

- Single Precision, DP similar
- Sign bit: 1 means negative0 means positive
- Significand:
 - To pack more bits, leading 1 implicit for normalized numbers
 - 1 + 23 bits single, 1 + 52 bits double
 - always true: 0 < Significand < 1 (for normalized numbers)
- Note: 0 has no leading 1, so reserve exponent value 0 just for number 0

IEEE 754 Floating Point Standard (2/4)

- Kahan wanted FP numbers to be used even if no FP hardware; e.g., sort records with FP numbers using integer compares
- Could break FP number into 3 parts: compare signs, then compare exponents, then compare significands
- Wanted it to be faster, single compare if possible, especially if positive numbers
- Then want order:
 - Highest order bit is sign (negative < positive)
 - Exponent next, so big exponent => bigger #
 - Significand last: exponents same => bigger #

IEEE 754 Floating Point Standard (3/4)

- Negative Exponent?
 - 2's comp? 1.0 x 2^{-1} v. 1.0 x 2^{+1} (1/2 v. 2)
- - 2 0 0000 0001 000 0000 0000 0000 0000
 - This notation using integer compare of 1/2 v. 2 makes 1/2 > 2!
 - Instead, pick notation 0000 0001 is most negative, and 1111 1111 is most positive
 - 1.0 x 2^{-1} v. 1.0 x 2^{+1} (1/2 v. 2)
 - - 0 1000 0000 000 0000 0000 0000 0000

IEEE 754 Floating Point Standard (4/4)

- Called <u>Biased Notation</u>, where bias is number subtract to get real number
 - IEEE 754 uses bias of 127 for single prec.
 - Subtract 127 from Exponent field to get actual value for exponent
 - 1023 is bias for double precision
- Summary (single precision):

3130 2322 (Capificand

S Exponent Significand

1 bit 8 bits 23 bits

• (-1)^S x (1 + Significand) x 2^(Exponent-127)

 Double precision identical, except with exponent bias of 1023

Peer Instruction

1 1000 0001 111 0000 0000 0000 0000 0000

What is the decimal equivalent of the floating pt # above?

```
1: -1.75
2: -3.5
3: -3.75
4: -7
5: -7.5
6: -15
7: -7 * 2^129
8: -129 * 2^7
```


Peer Instruction Answer

What is the decimal equivalent of:

```
Exponent
                      Significand
(-1)^{s} x (1 + Significand) x 2^{(Exponent-127)}
(-1)^1 \times (1 + .111) \times 2^{(129-127)}
 -1 \times (1.111) \times 2^{(2)}
-111.1
                                   -1.75
                                2: -3.5
-7.5
```


3: -3.75 -129×2^{7}

"And in conclusion..."

- Floating Point numbers <u>approximate</u> values that we want to use.
- IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers
 - Every desktop or server computer sold since
 ~1997 follows these conventions
- Summary (single precision):

31 30 23 22 C S Exponent Significand

1 bit 8 bits 23 bits

• (-1)^S x (1 + Significand) x 2^(Exponent-127)

