

Precision and Accuracy

Don't confuse these two terms!
Precision is a count of the number bits in a computer word used to represent a value.
Accuracy is a measure of the difference between the actual value of a number and its computer representation.
High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy.
Example: float pi $=3.14$;
pi will be represented using all 24 bits of the significant (highly precise), but is only an approximation (not accurate).

CS61c L11 Floating Point II (4)

Representation of Fractions

"Binary Point" like decimal point signifies boundary between integer and fractional parts:

Example 6-bit
representation:

$10.1010_{2}=1 \times 2^{1}+1 \times 2^{-1}+1 \times 2^{-3}=\mathbf{2 . 6 2 5}_{10}$
If we assume "fixed binary point", range of 6-bit representations with this format:

0 to 3.9375 (almost 4)

CS61CLI1 Floating Point||(6)

Review

- Floating Point numbers approximate values that we want to use.
- IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers
- Every desktop or server computer sold since ~1997 follows these conventions
- Summary (single precision):

$\cdot(-1)^{\mathrm{S}} \times\left(1+\right.$ Significand) $\times 2^{\text {(Exponent-127) }}$
Cel - Double precision identical, bias of $\underset{\text { csictin }}{1023}$

Fractional Powers of 2			
	i	2^{-i}	
	0	$1.0 \quad 1$	
	1	0.5 1/2	
	2	$0.25 \quad 1 / 4$	
	3	0.125 1/8	
	4	$0.0625 \quad 1 / 16$	
	5	$0.031251 / 32$	
	6	0.015625	
	7	0.0078125	
	8	0.00390625	
	9	0.001953125	
	10	0.0009765625	
	11	0.00048828125	
	12	0.000244140625	
	13	0.0001220703125	
	14	0.00006103515625	
Cll Beamer, Summer 2007 © UCB			

Understanding the Significand (1/2)

- Method 1 (Fractions):
- In decimal: $\mathbf{0 . 3 4 0}_{10}=340_{10} /{ }^{1000}{ }_{10}$ $\Rightarrow 34_{10} / 100_{10}$
- In binary: $0.110_{2}=>110_{2} / 1000_{2}=6_{10} / 8_{10}$ $\Rightarrow 11_{2} / 100_{2}=3_{10} / 4_{10}$
- Advantage: less purely numerical, more thought oriented; this method usually helps people understand the meaning of the significand better

Cll

Understanding the Significand (2/2)

- Method 2 (Place Values):
- Convert from scientific notation
- In decimal: $1.6732=\left(1 \times 10^{\circ}\right)+\left(6 \times 10^{-1}\right)+$ $\left(7 \times 10^{-2}\right)+\left(3 \times 10^{-3}\right)+\left(2 \times 10^{-4}\right)$
- In binary: $\quad 1.1001=\left(1 \times 2^{0}\right)+\left(1 \times 2^{-1}\right)+$ $\left(0 \times 2^{-2}\right)+\left(0 \times 2^{-3}\right)+\left(1 \times 2^{-4}\right)$
- Interpretation of value in each position extends beyond the decimal/binary point
- Advantage: good for quickly calculating significand value; use this method for translating FP numbers

CS61CL11 Floating Paint I(8) Beamer, Summer 2007 ©uc

Converting Decimal to FP (1/3)

- Simple Case: If denominator is an exponent of $2(2,4,8,16$, etc.), then it's easy.
- Show MIPS representation of $\mathbf{- 0 . 7 5}$
$-0.75=-3 / 4$
$--11_{\text {two }} / 100_{\text {two }}=-0.11_{\text {two }}$
- Normalized to $-1.1_{\text {two }} \times 2^{-1}$
$\cdot(-1)^{\mathrm{S}} \times\left(1+\right.$ Significand) $\times 2^{(\text {Exponent-127) }}$
$\cdot(-1)^{1} \times(1+.1000000 \ldots 0000) \times 2^{(126-127)}$

| 1 | 01111110 | 10000000000000000000000 |
| :--- | :--- | :--- | :--- |

Cs61c L11 Floating Point || (10)

Converting Decimal to FP (3/3)

- Fact: All rational numbers have a repeating pattern when written out in decimal.
- Fact: This still applies in binary.
- To finish conversion:
- Write out binary number with repeating pattern.
- Cut it off after correct number of bits (different for single \mathbf{v}. double precision).
- Derive Sign, Exponent and Significand fields.

Converting Decimal to FP (2/3)

- Not So Simple Case: If denominator is not an exponent of 2.
- Then we can't represent number precisely, but that's why we have so many bits in significand: for precision
- Once we have significand, normalizing a number to get the exponent is easy.
- So how do we get the significand of a neverending number?
csacon romemomen in

[^0]
Representation for $\pm \infty$

- In FP, divide by 0 should produce $\pm \infty$, not overflow.
-Why?
- OK to do further computations with ∞ E.g., X/O > Y may be a valid comparison
- Ask math majors
- IEEE 754 represents $\pm \infty$
- Most positive exponent reserved for ∞
- Significands all zeroes
csact cur formang Pominn (19)

Representation for Not a Number

-What is sqrt (-4.0) or $0 / 0$?

- If ∞ not an error, these shouldn't be either.
- Called Not a Number (NaN)
- Exponent = 255, Significand nonzero
- Why is this useful?
- Hope NaNs help with debugging?
- They contaminate: op(NaN, X) = NaN

Cs61c L11 Floating Point 1 | (17)

Representation for Denorms (2/2)

- Solution:
- We still haven't used Exponent $=0$, Significand nonzero
- Denormalized number: no leading 1, implicit exponent $=-126$.
- Smallest representable pos num:

$$
a=2^{-149}
$$

- Second smallest representable pos num:

$$
b=2^{-148}
$$

Representation for 0

- Represent 0 ?
- exponent all zeroes
- significand all zeroes too
- What about sign?
-+0: 00000000000000000000000000000000
--0: 10000000000000000000000000000000
-Why two zeroes?
- Helps in some limit comparisons
- Ask math majors

Cal

Representation for Denorms (1/2)

- Problem: There's a gap among representable FP numbers around 0
- Smallest representable pos num:

$$
a=1.0 \ldots 2^{*} 2^{-126}=2^{-126}
$$

- Second smallest representable pos num:

$$
b=1.000 \ldots \ldots .1_{2} * 2^{-126}=2^{-126}+2^{-149}
$$

a-0 $=2^{-126}$
$\begin{array}{ll}\mathbf{b}-\mathbf{a}=\mathbf{2}^{-149} & \text { Normalization } \\ \text { and implicit } 1\end{array}$ is to blame!

Cal Csacurn ramemoseman un Beaneras summeraorr evee

Overview

- Reserve exponents, significands:

Exponent	Significand	Object
0	0	0
0	nonzero	Denorm
$1-254$	$\underline{\text { anything }}$	$\underline{+/-\mathrm{fl} \text { pt. } \#}$
255	$\underline{0}$	$\underline{+/-\infty}$
$\mathbf{2 5 5}$	$\underline{\text { nonzero }}$	$\underline{\mathrm{NaN}}$

Peer Instruction

- Let $f(1,2)=$ \# of floats between 1 and 2
-Let $f(2,3)=$ \# of floats between 2 and 3

```
    1: f(1,2) < f(2,3)
    2: f(1,2)=f(2,3)
3: f(1,2) > f(2,3)
```

\qquad Beamer, Summer 2007 © UCB

More Administrivia

- Assignments
- Proj1 due tonight @ 11:59pm
-HW4 due 7/15 @ 11:59pm
- Proj2 posted, due 7/20 @ 11:59pm
- Mistaken Green Sheet Error
- When I said jal was $R[31]=P C+8$, it should be R[31] = PC + 4 until after the midterm
- Treat it this way on HW4 and Midterm

Cs61c L11 Floating Point $11(24)$

IEEE Four Rounding Modes

- Round towards + ∞
- ALWAYS round "up": $2.1 \Rightarrow 3,-2.1 \Rightarrow-2$
- Round towards - ∞
-ALWAYS round "down": $1.9 \Rightarrow 1,-1.9 \Rightarrow-2$
- Round towards 0 (I.e., truncate)
- Just drop the last bits
- Round to (nearest) even (default)
\cdot Normal rounding, almost: $2.5 \Rightarrow 2,3.5 \Rightarrow 4$
- Like you learned in grade school (almost)
- Insures fairness on calculation
- Half the time we round up, other half down
- Also called Unbiased

Administrivia...Midterm in 11 days!

- Midterm 10 Evans Mon 2007-7-23 @ 7-10pm
- Conflicts/DSP? Email Me
- How should we study for the midterm?
- Form study groups -- don't prepare in isolation!
- Attend the review session
(2007-7-20 - Time \& Place TBD)
- Look over HW, Labs, Projects
- Write up your 1-page study sheet--handwritten

Go over old exams - HKN office has put them online (link from 61C home page)

- If you have trouble remembering whether it's
+127 or -127
remember the exponent bits are unsigned and have max=255, min=0, so what do we have to do? ${ }^{5} 561 \mathrm{C}$ L11 Floating Point| | 123)

Rounding

- Math on real numbers \Rightarrow we worry about rounding to fit result in the significant field.
- FP hardware carries 2 extra bits of precision, and rounds for proper value
-Rounding occurs when...
- converting double to single precision - converting floating point \# to an integer - Intermediate step if necessary
 Beamer, Summer 2007 © UCB

Integer Multiplication (1/3)

- Paper and pencil example (unsigned):

Multiplicand	1000	8
Multiplier	$\times 1001$	9
	$\begin{aligned} & 1000 \\ & 0000 \end{aligned}$	
	000	
+100		
010	01000	

- \mathbf{m} bits $\mathrm{x} \mathbf{n}$ bits $=\mathbf{m}+\mathrm{n}$ bit product

Cal
ancul fomana poonurner Beamer, Summer 2007 ®uCB

Integer Multiplication (2/3)

- In MIPS, we multiply registers, so:
-32-bit value $\times 32$-bit value $=64$-bit value
- Syntax of Multiplication (signed):
- mult register1, register2
- Multiplies 32-bit values in those registers \& puts 64-bit product in special result regs:
- puts product upper half in hi, lower half in lo
- hi and lo are 2 registers separate from the 32 general purpose registers
- Use mfhi register \& mflo register to move from hi, lo to another register

Cs61C L11 Floating Point $11(28)$

Integer Division (1/2)

- Paper and pencil example (unsigned):

Divisor $1000 \frac{1001}{\frac{1001010}{100}}$| Quotient |
| :---: |
| Dividend |
| 10101 |
| 1010 |
| -1000 |

- Dividend = Quotient x Divisor + Remainder

Cs61C L11 Floating Point || (30)

Unsigned Instructions \& Overflow

- MIPS also has versions of mult, div for unsigned operands:

```
            multu
            divu
```

- Determines whether or not the product and quotient are changed if the operands are signed or unsigned.
- MIPS does not check overflow on ANY signed/unsigned multiply, divide instr
- Up to the software to check hi

CS61C L11 Floating Point 1 | 32

Integer Multiplication (3/3)

- Example:
- in C: a = b * c;
- in MIPS:
- let ble $\$ \mathbf{s} 2$; let c be $\$ \mathbf{s} 3$; and let a be \$s0 and $\$ s 1$ (since it may be up to 64 bits)
mult \$s2,\$s3 \# b*c
mfhi \$s0 \# upper half of
mflo \$s1 \# lower half of
\# product into \$s1
- Note: Often, we only care about the lower half of the product.
Cal \qquad

Integer Division (2/2)

- Syntax of Division (signed):
-div register1, register2
- Divides 32-bit register 1 by 32-bit register 2:
- puts remainder of division in hi , quotient in lo
- Implements C division (/) and modulo (\%)
- Example in C: $a=c / d$;
$\mathrm{b}=\mathrm{c} \% \mathrm{~d}$;
- in MIPS: $a \leftrightarrow \$ s 0 ; b \leftrightarrow \$ s 1 ; c \leftrightarrow \$ \mathbf{s}$; $d \leftrightarrow \$ s 3$
div \$s2,\$s3 \# lo=c/d, hi=cod
mflo \$s0 \# get quotient
mfhi \$s1 \# get remainder
Cal
Cs61c L11 Floating Point || (31) Beamer, Summer 2007 ® UC

FP Addition \& Subtraction

- Much more difficult than with integers (can't just add significands)
- How do we do it?
- De-normalize to match larger exponent
- Add significands to get resulting one
- Normalize (\& check for under/overflow)
- Round if needed (may need to renormalize)
- If signs \neq, do a subtract. (Subtract similar)
- If signs \neq for add (or = for sub), what's ans sign?
- Question: How do we integrate this into the integer arithmetic unit? [Answer: We don't!]

Cal

${ }^{5} 51 \mathrm{C}$ L11 Floating Point|| (33)

MIPS Floating Point Architecture (1/4)

-Separate floating point instructions:

- Single Precision:
add.s, sub.s, mul.s, div.s
- Double Precision:
add.d, sub.d, mul.d, div.d
-These are far more complicated than their integer counterparts
- Can take much longer to execute
 Beamer, Summer 2007 ® UCB

MIPS Floating Point Architecture (3/4)

- 1990 Solution: Make a completely separate chip that handles only FP.
- Coprocessor 1: FP chip
- contains 32 32-bit registers: $\$ £ 0, \$ £ 1, \ldots$
- most of the registers specified in . s and .d instruction refer to this set
- separate load and store: lwc1 and swc1 ("load word coprocessor 1", "store ...")
- Double Precision: by convention, even/odd pair contain one DP FP number: \$f0/\$f1, \$f2/\$f3, ..., \$f30/\$f31

Cll - Even register is the name

cs61c L11 Floating Point II (36)

Peer Instruction

1. Converting float $->$ int $->$ float produces same float number
2. Converting int $->$ float $->$ int produces same int number
3. FP add is associative:

$$
(x+y)+z=x+(y+z)
$$

Csalct11 Elating Point 1 (38)

MIPS Floating Point Architecture (2/4)

- Problems:
- Inefficient to have different instructions take vastly differing amounts of time.
- Generally, a particular piece of data will not change $\mathrm{FP} \Leftrightarrow$ int within a program.

Only 1 type of instruction will be used on it.

- Some programs do no FP calculations
- It takes lots of hardware relative to integers to do FP fast

Cal

MIPS Floating Point Architecture (4/4)

- 1990 Computer actually contains multiple separate chips:
- Processor: handles all the normal stuff
- Coprocessor 1: handles FP and only FP;
- more coprocessors?... Yes, later
- Today, FP coprocessor integrated with CPU, or cheap chips may leave out FP HW
- Instructions to move data between main processor and coprocessors:
-mfc0, mtc0, mfc1, mtc1, etc.
- Appendix contains many more FP ops

Cal
cancun romenomana Beamer Summer 2007 © UC
"And in conclusion..."

- Reserve exponents, significands:

Exponent	Significand	Object
0	0	0
0	nonzero	Denorm
$1-254$	anything	$+/-\mathrm{fl}. \mathrm{pt}. \mathrm{\#}$
255	$\underline{0}$	$+/-\infty$
255	$\underline{\text { nonzero }}$	$\underline{\mathrm{NaN}}$

- Integer mult, div uses hi, lo regs $\cdot m f h i$ and mflo copies out.
- Four rounding modes (to even default)
- MIPS FL ops complicated, expensive

Ssectur fomana ponn 40

[^0]: Example: Representing 1/3 in MIPS
 -1/3
 $=0.33333 \ldots{ }_{10}$
 $=0.25+0.0625+0.015625+0.00390625+\ldots$
 $=1 / 4+1 / 16+1 / 64+1 / 256+\ldots$
 $=2^{-2}+2^{-4}+2^{-6}+2^{-8}+\ldots$
 $=0.0101010101 \ldots{ }^{*}{ }^{20}$
 $=1.0101010101 \ldots{ }_{2}^{*} 2^{-2}$

 - Sign: 0
 - Exponent $=-2+127=125=01111101$
 - Significand = 0101010101...

 Cal 0 O 0111110101010101010101010101010

