
CS61C L11 Floating Point II (1) Beamer, Summer 2007 © UCB

Scott Beamer, Instructor

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures
 Lecture #11 – Floating Point II

2007-7-12

Sony &
Nintendo
make E3

News

www.nytimes.com
CS61C L11 Floating Point II (2) Beamer, Summer 2007 © UCB

Review
•Floating Point numbers approximate
values that we want to use.
• IEEE 754 Floating Point Standard is most
widely accepted attempt to standardize
interpretation of such numbers
• Every desktop or server computer sold since
~1997 follows these conventions

•Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

• Double precision identical, bias of 1023

CS61C L11 Floating Point II (4) Beamer, Summer 2007 © UCB

Precision and Accuracy

Precision is a count of the number bits in a
computer word used to represent a value.

Accuracy is a measure of the difference
between the actual value of a number and
its computer representation.

Don’t confuse these two terms!

High precision permits high accuracy but doesn’t
guarantee it. It is possible to have high precision
but low accuracy.
Example: float pi = 3.14;

pi will be represented using all 24 bits of the
significant (highly precise), but is only an
approximation (not accurate).

CS61C L11 Floating Point II (5) Beamer, Summer 2007 © UCB

Fractional Powers of 2

0 1.0 1
1 0.5 1/2
2 0.25 1/4
3 0.125 1/8
4 0.0625 1/16
5 0.03125 1/32
6 0.015625
7 0.0078125
8 0.00390625
9 0.001953125
10 0.0009765625
11 0.00048828125
12 0.000244140625
13 0.0001220703125
14 0.00006103515625
15 0.000030517578125

i 2-i

CS61C L11 Floating Point II (6) Beamer, Summer 2007 © UCB

Representation of Fractions
“Binary Point” like decimal point signifies
boundary between integer and fractional parts:

xx.yyyy
21

20 2-1 2-2 2-3 2-4

Example 6-bit
representation:

10.10102 = 1x21 + 1x2-1 + 1x2-3 = 2.62510

If we assume “fixed binary point”, range of 6-bit
representations with this format:

0 to 3.9375 (almost 4)

CS61C L11 Floating Point II (7) Beamer, Summer 2007 © UCB

Understanding the Significand (1/2)

•Method 1 (Fractions):
• In decimal: 0.34010 => 34010/100010

 => 3410/10010
• In binary: 0.1102 => 1102/10002 = 610/810

 => 112/1002 = 310/410

• Advantage: less purely numerical, more
thought oriented; this method usually
helps people understand the meaning of
the significand better

CS61C L11 Floating Point II (8) Beamer, Summer 2007 © UCB

Understanding the Significand (2/2)

•Method 2 (Place Values):
• Convert from scientific notation
• In decimal: 1.6732 = (1x100) + (6x10-1) +
(7x10-2) + (3x10-3) + (2x10-4)

• In binary: 1.1001 = (1x20) + (1x2-1) +
(0x2-2) + (0x2-3) + (1x2-4)

• Interpretation of value in each position
extends beyond the decimal/binary point

• Advantage: good for quickly calculating
significand value; use this method for
translating FP numbers

CS61C L11 Floating Point II (9) Beamer, Summer 2007 © UCB

Example: Converting Binary FP to Decimal

•Sign: 0 => positive
•Exponent:

• 0110 1000two = 104ten

• Bias adjustment: 104 - 127 = -23

•Significand:
• 1 + 1x2-1+ 0x2-2 + 1x2-3 + 0x2-4 + 1x2-5 +...
=1+2-1+2-3 +2-5 +2-7 +2-9 +2-14 +2-15 +2-17 +2-22

= 1.0ten + 0.666115ten

0 0110 1000 101 0101 0100 0011 0100 0010

•Represents: 1.666115ten*2-23 ~ 1.986*10-7

 (about 2/10,000,000)

CS61C L11 Floating Point II (10) Beamer, Summer 2007 © UCB

Converting Decimal to FP (1/3)
•Simple Case: If denominator is an
exponent of 2 (2, 4, 8, 16, etc.), then
it’s easy.
•Show MIPS representation of -0.75

• -0.75 = -3/4
• -11two/100two = -0.11two
• Normalized to -1.1two x 2-1

• (-1)S x (1 + Significand) x 2(Exponent-127)

• (-1)1 x (1 + .100 0000 ... 0000) x 2(126-127)

1 0111 1110 100 0000 0000 0000 0000 0000

CS61C L11 Floating Point II (11) Beamer, Summer 2007 © UCB

Converting Decimal to FP (2/3)

•Not So Simple Case: If denominator is
not an exponent of 2.

• Then we can’t represent number precisely,
but that’s why we have so many bits in
significand: for precision

• Once we have significand, normalizing a
number to get the exponent is easy.

• So how do we get the significand of a
neverending number?

CS61C L11 Floating Point II (12) Beamer, Summer 2007 © UCB

Converting Decimal to FP (3/3)

•Fact: All rational numbers have a
repeating pattern when written out in
decimal.
•Fact: This still applies in binary.
•To finish conversion:

• Write out binary number with repeating
pattern.

• Cut it off after correct number of bits
(different for single v. double precision).

• Derive Sign, Exponent and Significand
fields.

CS61C L11 Floating Point II (13) Beamer, Summer 2007 © UCB

Example: Representing 1/3 in MIPS
•1/3

= 0.33333…10

= 0.25 + 0.0625 + 0.015625 + 0.00390625 + …
= 1/4 + 1/16 + 1/64 + 1/256 + …
= 2-2 + 2-4 + 2-6 + 2-8 + …
= 0.0101010101… 2 * 20

= 1.0101010101… 2 * 2-2

• Sign: 0
• Exponent = -2 + 127 = 125 = 01111101
• Significand = 0101010101…

0 0111 1101 0101 0101 0101 0101 0101 010

CS61C L11 Floating Point II (14) Beamer, Summer 2007 © UCB

Representation for ± ∞

• In FP, divide by 0 should produce ± ∞,
not overflow.
•Why?

• OK to do further computations with ∞
E.g., X/0 > Y may be a valid comparison

• Ask math majors

• IEEE 754 represents ± ∞
• Most positive exponent reserved for ∞
• Significands all zeroes

CS61C L11 Floating Point II (15) Beamer, Summer 2007 © UCB

Representation for 0
•Represent 0?

• exponent all zeroes
• significand all zeroes too
• What about sign?
•+0: 0 00000000 00000000000000000000000

•-0: 1 00000000 00000000000000000000000

•Why two zeroes?
• Helps in some limit comparisons
• Ask math majors

CS61C L11 Floating Point II (17) Beamer, Summer 2007 © UCB

Representation for Not a Number

•What is sqrt(-4.0)or 0/0?
• If ∞ not an error, these shouldn’t be either.
• Called Not a Number (NaN)
• Exponent = 255, Significand nonzero

•Why is this useful?
• Hope NaNs help with debugging?
• They contaminate: op(NaN, X) = NaN

CS61C L11 Floating Point II (18) Beamer, Summer 2007 © UCB

Representation for Denorms (1/2)
•Problem: There’s a gap among
representable FP numbers around 0

• Smallest representable pos num:
a = 1.0… 2 * 2-126 = 2-126

• Second smallest representable pos num:
b = 1.000……1 2 * 2-126 = 2-126 + 2-149

a - 0 = 2-126

b - a = 2-149

b
a0 +-

Gaps!

Normalization
and implicit 1
is to blame!

CS61C L11 Floating Point II (19) Beamer, Summer 2007 © UCB

Representation for Denorms (2/2)

•Solution:
• We still haven’t used Exponent = 0,
Significand nonzero

• Denormalized number: no leading 1,
implicit exponent = -126.

• Smallest representable pos num:
a = 2-149

• Second smallest representable pos num:
b = 2-148

0 +-

CS61C L11 Floating Point II (20) Beamer, Summer 2007 © UCB

Overview

•Reserve exponents, significands:
Exponent Significand Object
0 0 0
0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero NaN

CS61C L11 Floating Point II (21) Beamer, Summer 2007 © UCB

Peer Instruction

• Let f(1,2) = # of floats between 1 and 2
• Let f(2,3) = # of floats between 2 and 3

1: f(1,2) < f(2,3)
2: f(1,2) = f(2,3)
3: f(1,2) > f(2,3)

CS61C L11 Floating Point II (23) Beamer, Summer 2007 © UCB

Administrivia…Midterm in 11 days!
•Midterm 10 Evans Mon 2007-7-23 @ 7-10pm

• Conflicts/DSP? Email Me

• How should we study for the midterm?
• Form study groups -- don’t prepare in isolation!
• Attend the review session

(2007-7-20 - Time & Place TBD)
• Look over HW, Labs, Projects
• Write up your 1-page study sheet--handwritten
• Go over old exams – HKN office has put them

online (link from 61C home page)

• If you have trouble remembering whether it’s
+127 or –127

• remember the exponent bits are unsigned and
have max=255, min=0, so what do we have to do?

CS61C L11 Floating Point II (24) Beamer, Summer 2007 © UCB

More Administrivia

•Assignments
• Proj1 due tonight @ 11:59pm
• HW4 due 7/15 @ 11:59pm
• Proj2 posted, due 7/20 @ 11:59pm

•Mistaken Green Sheet Error
• When I said jal was R[31] = PC + 8, it
should be R[31] = PC + 4 until after the
midterm

• Treat it this way on HW4 and Midterm

CS61C L11 Floating Point II (25) Beamer, Summer 2007 © UCB

Rounding

•Math on real numbers ⇒ we worry
about rounding to fit result in the
significant field.
•FP hardware carries 2 extra bits of
precision, and rounds for proper value
•Rounding occurs when…

• converting double to single precision
• converting floating point # to an integer
• Intermediate step if necessary

CS61C L11 Floating Point II (26) Beamer, Summer 2007 © UCB

IEEE Four Rounding Modes
•Round towards + ∞

• ALWAYS round “up”: 2.1 ⇒ 3, -2.1 ⇒ -2
•Round towards - ∞

• ALWAYS round “down”: 1.9 ⇒ 1, -1.9 ⇒ -2
•Round towards 0 (I.e., truncate)

• Just drop the last bits
•Round to (nearest) even (default)

• Normal rounding, almost: 2.5 ⇒ 2, 3.5 ⇒ 4
• Like you learned in grade school (almost)
• Insures fairness on calculation
• Half the time we round up, other half down
• Also called Unbiased

CS61C L11 Floating Point II (27) Beamer, Summer 2007 © UCB

Integer Multiplication (1/3)
•Paper and pencil example (unsigned):

Multiplicand 1000 8
Multiplier x1001 9

1000
 0000
 0000
+1000
01001000

• m bits x n bits = m + n bit product

CS61C L11 Floating Point II (28) Beamer, Summer 2007 © UCB

Integer Multiplication (2/3)
• In MIPS, we multiply registers, so:

• 32-bit value x 32-bit value = 64-bit value

•Syntax of Multiplication (signed):
• mult register1, register2
• Multiplies 32-bit values in those registers &
puts 64-bit product in special result regs:

- puts product upper half in hi, lower half in lo
• hi and lo are 2 registers separate from the
32 general purpose registers

• Use mfhi register & mflo register to
move from hi, lo to another register

CS61C L11 Floating Point II (29) Beamer, Summer 2007 © UCB

Integer Multiplication (3/3)
•Example:

• in C: a = b * c;

• in MIPS:
- let b be $s2; let c be $s3; and let a be $s0

and $s1 (since it may be up to 64 bits)
mult $s2,$s3 # b*c
mfhi $s0 # upper half of
 # product into $s0

mflo $s1 # lower half of
 # product into $s1

•Note: Often, we only care about the
lower half of the product.

CS61C L11 Floating Point II (30) Beamer, Summer 2007 © UCB

Integer Division (1/2)

•Paper and pencil example (unsigned):
 1001 Quotient

Divisor 1000|1001010 Dividend
 -1000

 10
 101
 1010
 -1000

10 Remainder
(or Modulo result)

• Dividend = Quotient x Divisor + Remainder

CS61C L11 Floating Point II (31) Beamer, Summer 2007 © UCB

Integer Division (2/2)

• Syntax of Division (signed):
•div register1, register2
• Divides 32-bit register 1 by 32-bit register 2:
• puts remainder of division in hi, quotient in lo

• Implements C division (/) and modulo (%)
• Example in C: a = c / d;

b = c % d;

• in MIPS: a↔$s0;b↔$s1;c↔$s2;d↔$s3
div $s2,$s3 # lo=c/d, hi=c%d
mflo $s0 # get quotient
mfhi $s1 # get remainder

CS61C L11 Floating Point II (32) Beamer, Summer 2007 © UCB

Unsigned Instructions & Overflow

•MIPS also has versions of mult, div
for unsigned operands:

multu

divu
• Determines whether or not the product
and quotient are changed if the operands
are signed or unsigned.

•MIPS does not check overflow on ANY
signed/unsigned multiply, divide instr

• Up to the software to check hi

CS61C L11 Floating Point II (33) Beamer, Summer 2007 © UCB

FP Addition & Subtraction

•Much more difficult than with integers
(can’t just add significands)
• How do we do it?

• De-normalize to match larger exponent
• Add significands to get resulting one
• Normalize (& check for under/overflow)
• Round if needed (may need to renormalize)

• If signs ≠ , do a subtract. (Subtract similar)
• If signs ≠ for add (or = for sub), what’s ans

sign?

•Question: How do we integrate this into the
integer arithmetic unit? [Answer: We don’t!]

CS61C L11 Floating Point II (34) Beamer, Summer 2007 © UCB

MIPS Floating Point Architecture (1/4)
•Separate floating point instructions:

• Single Precision:
add.s, sub.s, mul.s, div.s

• Double Precision:
add.d, sub.d, mul.d, div.d

•These are far more complicated than
their integer counterparts

• Can take much longer to execute

CS61C L11 Floating Point II (35) Beamer, Summer 2007 © UCB

MIPS Floating Point Architecture (2/4)

•Problems:
• Inefficient to have different instructions
take vastly differing amounts of time.

• Generally, a particular piece of data will
not change FP ⇔ int within a program.

- Only 1 type of instruction will be used on it.
• Some programs do no FP calculations
• It takes lots of hardware relative to
integers to do FP fast

CS61C L11 Floating Point II (36) Beamer, Summer 2007 © UCB

MIPS Floating Point Architecture (3/4)

•1990 Solution: Make a completely
separate chip that handles only FP.
•Coprocessor 1: FP chip

• contains 32 32-bit registers: $f0, $f1, …
• most of the registers specified in .s and
.d instruction refer to this set

• separate load and store: lwc1 and swc1
(“load word coprocessor 1”, “store …”)

• Double Precision: by convention,
even/odd pair contain one DP FP number:
$f0/$f1, $f2/$f3, … , $f30/$f31

- Even register is the name
CS61C L11 Floating Point II (37) Beamer, Summer 2007 © UCB

MIPS Floating Point Architecture (4/4)
•1990 Computer actually contains
multiple separate chips:

• Processor: handles all the normal stuff
• Coprocessor 1: handles FP and only FP;
• more coprocessors?… Yes, later
• Today, FP coprocessor integrated with
CPU, or cheap chips may leave out FP HW

• Instructions to move data between main
processor and coprocessors:
•mfc0, mtc0, mfc1, mtc1, etc.

•Appendix contains many more FP ops

CS61C L11 Floating Point II (38) Beamer, Summer 2007 © UCB

Peer Instruction

1. Converting float -> int -> float
produces same float number

2. Converting int -> float -> int produces
same int number

3. FP add is associative:
(x+y)+z = x+(y+z)

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L11 Floating Point II (40) Beamer, Summer 2007 © UCB

“And in conclusion…”
•Reserve exponents, significands:

Exponent Significand Object
0 0 0
0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero NaN

• Integer mult, div uses hi, lo regs
•mfhi and mflo copies out.

•Four rounding modes (to even default)
•MIPS FL ops complicated, expensive

