inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures

Lecture #14 Introduction to Synchronous Digital Systems

2007-7-18

Scott Beamer, Instructor

What are "Machine Structures"?

Coordination of many *levels of abstraction*

We'll investigate lower abstraction layers! (contract between HW & SW)

CS61C L14 Introduction to Synchronous Digital Systems (3)

Synchronous Digital Systems

The hardware of a processor, such as the MIPS, is an example of a Synchronous Digital System

Synchronous:

- Means all operations are coordinated by a central clock.
 - It keeps the "heartbeat" of the system!

Digital:

- Mean all values are represented by discrete values
- Electrical signals are treated as 1's and 0's and grouped together to form words.

Logic Design

- Next 2 weeks: we'll study how a modern processor is built; starting with basic elements as building blocks.
- Why study hardware design?
 - Understand capabilities and limitations of hardware in general and processors in particular.
 - What processors can do fast and what they can't do fast (avoid slow things if you want your code to run fast!)
 - Background for more detailed hardware courses (CS 150, CS 152)
 - There is just so much you can do with processors. At some point you may need to design your own custom hardware.

Logic Gates

- Basic building blocks are logic *gates*.
 - In the beginning, did ad hoc designs, and then saw patterns repeated, gave names
 - Can build gates with transistors and resistors
- Then found theoretical basis for design
 - Can represent and reason about gates with truth tables and Boolean algebra
 - Assume know some truth tables and Boolean algebra from a math or circuits course.
 - Section B.2 in the textbook has a review

Physical Hardware

CS61C L14 Introduction to Synchronous Digital Systems (8)

Beamer, Summer 2007 © UCB

Transistors 101

- MOSFET
 - Metal-Oxide-Semiconductor Field-Effect Transistor
 - Come in two types:
 - n-type NMOSFET
 - p-type PMOSFET
- For n-type (p-type opposite)
 - If voltage not enough between G & S, transistor turns "off" (cut-off) and Drain-Source NOT connected
 - If the G & S voltage is high enough, transistor turns "on" (saturation) and Drain-Source ARE connected

CS61C L14 Introduction to Synchronous Digital Systems (9)

Transistor Circuit Rep. vs. Block diagram

- Chips is composed of nothing but transistors and wires.
- Small groups of transistors form useful building blocks.

 Block are organized in a hierarchy to build higher-level blocks: ex: adders.

Signals and Waveforms: Clocks

Signals and Waveforms: Adders

CS61C L14 Introduction to Synchronous Digital Systems (12)

Signals and Waveforms: Grouping

Bus - more than one signal treated as a unit

CS61C L14 Introduction to Synchronous Digital Systems (13)

Signals and Waveforms: Circuit Delay

- Synchronous Digital Systems are made up of two basic types of circuits:
- <u>Combinational Logic (CL) circuits</u>
 - Our previous adder circuit is an example.
 - Output is a function of the inputs only.
 - Similar to a pure function in mathematics, y = f(x). (No way to store information from one invocation to the next. No side effects)

• State Elements: circuits that store information.

Circuits with STATE (e.g., register)

- A. SW can peek at HW (past ISA abstraction boundary) for optimizations
- B. SW can depend on particular HW implementation of ISA
- C. Timing diagrams serve as a critical debugging tool in the EE toolkit

Beamer, Summer 2007 © UCB

Sample Debugging Waveform

CS61C L14 Introduction to Synchronous Digital Systems (18)

- ISA is very important abstraction layer
 - Contract between HW and SW
- Basic building blocks are logic gates
- Clocks control pulse of our circuits
- Voltages are analog, quantized to 0/1
- Circuit delays are fact of life
- Two types
 - Stateless Combinational Logic (&,I,~)

State circuits (e.g., registers)

CS61C L14 Introduction to Synchronous Digital Systems (19)

Administrivia

- Proj2 due Friday
- Midterm 7-10p on Monday in 10 Evans
- Midterm Review 11-2 on Friday, probably in 10 or 60 Evans
- Scott is not holding OH on Monday, but is holding extra OH on Friday 3-5

Accumulator Example

Why do we need to control the flow of information?

Assume:

- Each X value is applied in succession, one per cycle.
- After n cycles the sum is present on S.

First try...Does this work?

Nope!

Reason #1... What is there to control the next iteration of the 'for' loop? Reason #2... How do we say: 'S=0'?

Second try....How about this?

Register is used to hold up the transfer of data to adder.

CS61C L14 Introduction to Synchronous Digital Systems (23)

Register Details...What's inside?

- n instances of a "Flip-Flop"
- Flip-flop name because the output flips and flops between and 0,1
- D is "data", Q is "output"
- Also called "d-type Flip-Flop"

What's the timing of a Flip-flop? (1/2)

- Edge-triggered d-type flip-flop
 - This one is "positive edge-triggered"
- "On the rising edge of the clock, the input d is sampled and transferred to the output. At all other times, the input d is ignored."

CS61C L14 Introduction to Synchronous Digital Systems (25)

What's the timing of a Flip-flop? (2/2)

- Edge-triggered d-type flip-flop
 - This one is "positive edge-triggered"
- "On the rising edge of the clock, the input d is sampled and transferred to the output. At all other times, the input d is ignored."

Recap of Timing Terms

- Clock (CLK) steady square wave that synchronizes system
- Setup Time when the input must be stable before the rising edge of the CLK
- Hold Time when the input must be stable after the rising edge of the CLK
- "CLK-to-Q" Delay how long it takes the output to change, measured from the rising edge
- Flip-flop one bit of state that samples every rising edge of the CLK

Accumulator Revisited (proper timing 1/2)

- Reset input to register is used to force it to all zeros (takes priority over D input).
- S_{i-1} holds the result of the ith-1 iteration.
- Analyze circuit timing starting at the output of the register.

Accumulator Revisited (proper timing 2/2)

Tadd

·CLK-TO-9

- A. CLK-to-Q delays propagate in a synchronized circuit
- B. The hold time should be less than the CLK-to-Q delay
- C. The minimum period of a usable synchronous circuit is at least the CLK-to-Q delay

"And In conclusion..."

- We use feedback to maintain state
- Register files used to build memories
- D Flip-Flops used to build Register files
- Clocks tell us when D Flip-Flops change
 - Setup and Hold times important

