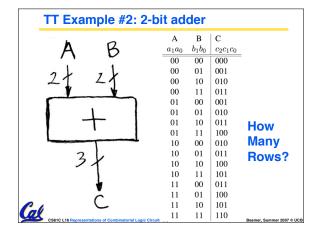
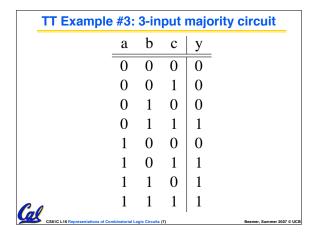
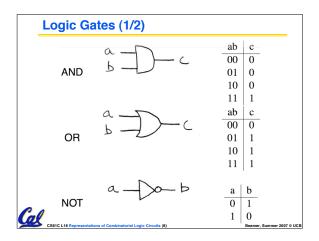
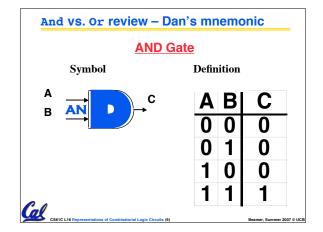
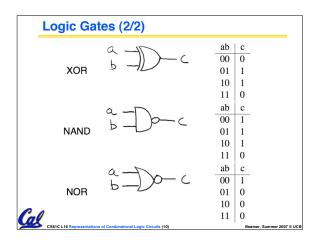

Review


- We use feedback to maintain state
- Register files used to build memories
- D-FlipFlops used to build Register files
- Clocks tell us when D-FlipFlops change
 - Setup and Hold times important
- TODAY
 - · Representation of CL Circuits
 - Truth Tables
 - Logic Gates
 - Boolean Algebra

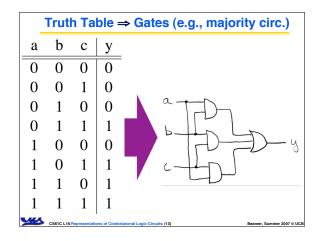

Beamer, Summer 2007 © U

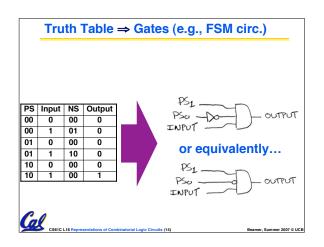






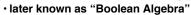
TT Example #3: 32-bit unsigned adder		
A	В	C
000 0	000 0	000 00
000 0	000 1	000 01
•		· How
•	•	. Many Rows?
•	•	•
111 1	1111 1	111 10 Beamer, Summer 2007 © UCB

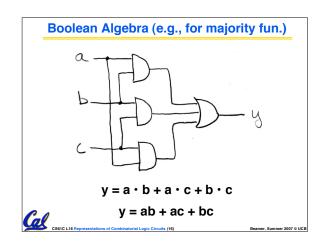


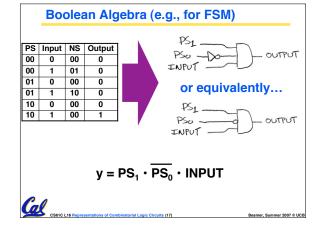

2-input gates extend to n-inputs c N-input XOR is the only one which isn't so obvious It's simple: XOR is a 1 iff the # of 1s at its input is odd ⇒ Cal .

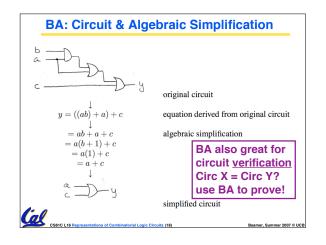
Administrivia

- Midterm TONIGHT 7-10pm in 10 Evans
 - Bring
 - Pencils/pens
 - One 8.5"x11" sheet of notes
 - Green Sheet (or copy of it)
 - Don't bring calculators (or other large electronics)
- Assignments
 - HW5 due 7/26 (up today)
 - · HW6 due 7/29



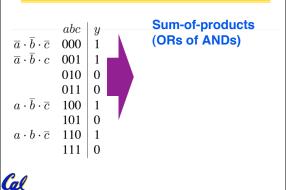

Boolean Algebra


- George Boole, 19th Century mathematician
- Developed a mathematical system (algebra) involving logic

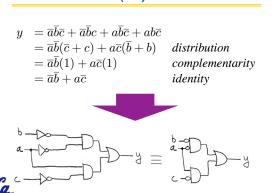


- Primitive functions: AND, OR and NOT
- The power of BA is there's a one-to-one correspondence between circuits made up of AND, OR and NOT gates and equations in BA

Laws of Boolean Algebra


Boolean Algebraic Simplification Example

$$egin{array}{ll} y &= ab + a + c \ &= a(b+1) + c & \textit{distribution, identity} \ &= a(1) + c & \textit{law of 1's} \ &= a + c & \textit{identity} \end{array}$$



Barmar Common 2007 © UCB

Canonical forms (1/2)

Canonical forms (2/2)

Peer Instruction


- A. $(a+b) \cdot (\overline{a}+b) = b$
- B. N-input gates can be thought of cascaded 2-input gates. I.e., (a Δ bc Δ d Δ e) = a Δ (bc Δ (d Δ e)) where Δ is one of AND, OR, XOR, NAND
- C. You can use NOR(s) with clever wiring to simulate AND, OR, & NOT

ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT

8: TTT

"And In conclusion..."

- Pipeline big-delay CL for faster clock
- Finite State Machines extremely useful
 You'll see them again in 150, 152 & 164
- Use this table and techniques we learned to transform from 1 to another

